Python学习打卡:day11

2024-06-20 22:36
文章标签 python 学习 打卡 day11

本文主要是介绍Python学习打卡:day11,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

day11

笔记来源于:黑马程序员python教程,8天python从入门到精通,学python看这套就够了

目录

  • day11
    • 83、自定义 Python 包
      • 创建包
      • 导入包
        • 方式1
        • 方式2
        • 方式3
        • 方式4
    • 84、安装第三方包
      • 安装第三方包——pip
        • pip的网络优化
      • 安装第三方包——PyCharm
    • 85、异常—模块—包综合案例
      • 模块1
        • 自写
        • 视频写法
      • 模块2
        • 自写
        • 视频写法
        • 总结
    • 86、JSON数据格式的转换
      • 基础概念
      • json 数据的格式:字典以及 内部元素都是字典的列表
      • Python 数据和 Json 数据的相互转化
    • 87、pyecharts 模块简介
    • 88、pyecharts的入门使用
      • 基础折线图
      • pyecharts配置选项
    • 89、数据准备
      • 原始数据格式
      • 数据处理
    • 90、生成折线图
      • 导入模块
      • 折线图相关配置项
        • 折线图相关配置项
        • 创建折线图
        • 添加数据
        • .add_yaxis相关配置选项
        • 全局配置选项(.set_global_opts)
    • 91、数据可视化案例——地图——基础地图的使用
      • 基础地图演示

83、自定义 Python 包

如果Python的模块太多了,就可能造成一定的混乱,那么就需要通过Python包的功能来管理。

从物理上看,包就是一个文件夹,在该文件夹下包含了一个 __init__.py 文件,该文件夹可用于包含多个模块文件;

从逻辑上看,包的本质依然是模块。

创建包

构建包的步骤如下

  1. 新建包my_package

  2. 新建包内模块:my_module1my_module2

  3. 模块内代码如下:
    在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

tips:新建包后,包内部会自动创建 __init__.py 文件,这个文件控制着包的导入行为。

导入包

方式1
import 包名.模块名包名.模块名.目标

示例代码:

import my_package_83.my_module1_83
import my_package_83.my_module2_83my_package_83.my_module1_83.info_print1()
my_package_83.my_module2_83.info_print2()
方式2
from 包名 import 模块名模块名.目标

示例代码:

from my_package_83 import my_module1_83
from my_package_83 import my_module2_83my_module1_83.info_print1()
my_module2_83.info_print2()
方式3
from 包名.模块名 import 目标目标

示例代码:

from my_package_83.my_module1_83 import info_print1
from my_package_83.my_module2_83 import info_print2info_print1()
info_print2()
方式4
from 包名 import *模块名.目标

示例代码:

# 通过 __all__ 变量,控制 import*
from my_package_83 import *
my_module1_83.info_print1()# error,__init__.py 文件中设置了 __all__ 只导入:my_module1_83,因此 my_module2_83 不管用
# my_module2_83.info_print2()

tips:必须在__init__.py文件中添加__all__ = [],控制允许导入的模块列表

84、安装第三方包

在Python程序的生态中,有许多非常多的第三方包(非Python官方),可以极大的帮助我们提高开发效率,如:

  • 科学计算中常用的:numpy包
  • 数据分析中常用的:pandas包
  • 大数据计算中常用的:pyspark、apache-flink包
  • 图形可视化常用的:matplotlib、pyecharts
  • 人工智能常用的:tensorflow

但是由于是第三方,所以Python没有内置,所以我们需要安装它们才可以导入使用。

安装第三方包——pip

第三方包的安装非常简单,我们只需要使用Python内置的pip程序即可。

打开我们许久未见的:命令提示符程序,在里面输入:

pip install 包名称

即可通过网络快速安装第三方包。

pip的网络优化

由于pip是连接的国外的网站进行包的下载,所以有的时候会速度很慢。

我们可以通过如下命令,让其连接国内的网站进行包的安装:

pip install -i https://pypi.tuna.tsinghua.edu.cn/simple 包名称

安装第三方包——PyCharm


在这里插入图片描述

同样使用国内清华镜像源进行下载:
在这里插入图片描述

85、异常—模块—包综合案例

在这里插入图片描述

模块1

自写
# 自写
def str_reverse(s):str = ""for element in s:str = element + strreturn strdef substr(s, x, y):str1 = ""str2 = ""str3 = ""list = []i = 0if x > y:tmp = xx = yy = tmpwhile i < x:str1 += s[i]i += 1list.append(str1)while i < y:str2 += s[i]i += 1list.append(str2)while i < len(s):str3 += s[i]i += 1list.append(str3)return listif __name__ == '__main__':# print(f"{str_reverse('  hello world  ')}")print(f"{substr('helloworld', 1, 3)}")
视频写法
# 视频写法
def str_reverse(s):"""功能:反转字符串:param s: 将被反转的字符串:return: 反转后的字符串"""return s[::-1]def substr(s, x, y):"""功能:按照给定的下标完成字符串的切片:param s: 即将被切片的字符串:param x: 切片的开始下标:param y: 切片的结束下标:return: 切片完成后的字符串"""return s[x:y]if __name__ == '__main__':print(str_reverse("黑马程序员"))print(substr("黑马程序员", 1, 3))

模块2

自写
def print_file_info(file_name):try:f = open(file_name, "r", encoding="UTF-8")print(f"文件存在,读取的内容为:\n{f.read()}")except:print("文件不存在")finally:f.close()def append_to_file(filename, data):f = open(filename, "a", encoding="UTF-8")f.write(data)f.close()if __name__ == '__main__':# print_file_info("/home/yin-roc/1-Github/Ubuntu20.04-VMware/pythonProject/Python_Learning/02_Python入门语法/74_test.txt")append_to_file("84_test.txt", "helloworld")
视频写法
def print_file_info(file_name):"""功能: 将指定路径的文件内容输出到控制台:param file_name: 即将读取文件的路径:return: None"""f = Nonetry:f = open(file_name, "r", encoding="UTF-8")content = f.read()print("文件内容如下:")print(content)except Exception as e:print(f"程序出现异常,原因是:{e}")finally:if f:f.close()def append_to_file(filename, data):"""功能:将指定的数据追加到指定的文件中:param filename: 指定文件的路径:param data: 指定的数据:return: None"""f = open(filename, "a", encoding="UTF-8")f.write(data)f.write("\n")f.close()if __name__ == '__main__':# print_file_info("84_test.txt")append_to_file("84_test.txt", "good")
总结
  1. 函数写法的规范要记得,包括函数功能的描述、参数的解释

  2. 字符串的切片操作除了 split,还有:

    my_str = "01234567"
    result4 = my_str[::-1]  
    

86、JSON数据格式的转换

基础概念

JSON是一种轻量级的数据交互格式。可以按照JSON指定的格式去组织和封装数据。

JSON本质上是一个带有特定格式的字符串

主要功能:json就是一种在各个编程语言中流通的数据格式,负责不同编程语言中的数据传递和交互。

各种编程语言存储数据的容器不尽相同,在Python中有字典dict这样的数据类型,而其它语言可能没有对应的字典。

为了让不同的语言都能够相互通用的互相传递数据,JSON就是一种非常良好的中转数据格式。如下图,以Python和C语言互传数据为例:
在这里插入图片描述

json 数据的格式:字典以及 内部元素都是字典的列表

# json数据的格式可以是: 
{"name":"admin","age":18} # 也可以是:  
[{"name":"admin","age":18},{"name":"root","age":16},{"name":"张三","age":20}] 

Python 数据和 Json 数据的相互转化

# 导入json模块 
import json # 准备符合格式json格式要求的python数据 
data = [{"name": "老王", "age": 16}, {"name": "张三", "age": 20}]# 通过 json.dumps(data) 方法把python数据转化为了 json数据 
data = json.dumps(data) # 通过 json.loads(data) 方法把json数据转化为了 python数据 
data = json.loads(data)

示例代码:

"""
演示 JSON 数据和 Python 字典的相互转换
"""
import json# 准备列表,列表内的每一个元素都是字典,将其转化为 JSON
data = [{"name":"张大山", "age":11}, {"name":"王大锤", "age":13}, {"name":"赵小虎", "age":16}]
json_str = json.dumps(data, ensure_ascii=False)
print(type(json_str))
print(json_str)
print("--------------------------------------------------------------")# 准备字典,将字典转换为 JSON
d = {"name":"zhoujielun", "addr":"taibei"}
json_str = json.dumps(d)
print(type(json_str))
print(json_str)
print("--------------------------------------------------------------")# 将 JSON 字符串转换为 Python 数据类型 [{k:v, k:v}, {k:v, k:v}]
s = '[{"name": "张大山", "age": 11}, {"name": "王大锤", "age": 13}, {"name": "赵小虎", "age": 16}]'
l = json.loads(s)
print(type(l))
print(l)
print("--------------------------------------------------------------")# 将 JSON 字符串转换为 Python 数据类型 {k:v, k:v}
s = '{"name": "zhoujielun", "addr": "taibei"}'
d = json.loads(s)
print(type(d))
print(d)# 结果
<class 'str'>
[{"name": "张大山", "age": 11}, {"name": "王大锤", "age": 13}, {"name": "赵小虎", "age": 16}]
-----------------------------------------------------------------------
<class 'str'>
{"name": "zhoujielun", "addr": "taibei"}
-----------------------------------------------------------------------
<class 'list'>
[{'name': '张大山', 'age': 11}, {'name': '王大锤', 'age': 13}, {'name': '赵小虎', 'age': 16}]
-----------------------------------------------------------------------
<class 'dict'>
{'name': 'zhoujielun', 'addr': 'taibei'}

87、pyecharts 模块简介

如果想要做出数据可视化效果图, 可以借助pyecharts模块来完成

概况 :

Echarts 是个由百度开源的数据可视化,凭借着良好的交互性,精巧的图表设计,得到了众多开发者的认可。而 Python 是门富有表达力的语言,很适合用于数据处理。当数据分析遇上数据可视化时pyecharts 诞生了。

快速安装

pip install pyecharts

官方画廊

https://gallery.pyecharts.org

88、pyecharts的入门使用

基础折线图

# 导包
from pyecharts.charts import Line
from pyecharts.options import TitleOpts, LegendOpts, ToolboxOpts,VisualMapOpts# 创建一个折线图对象
line = Line()# 给折线图对象添加 x 轴的数据
line.add_xaxis(["中国", "美国", "英国"])# 给折线图对象添加 y 轴的数据
line.add_yaxis("GDP", [30, 20, 10])# 通过 render 方法,将代码生成图像
line.render()

结果如下:
在这里插入图片描述

pyecharts配置选项

pyecharts模块中有很多的配置选项, 常用到2个类别的选项:

  • 全局配置选项
  • 系列配置选项

全局配置选项可以通过set_global_opts方法来进行配置, 相应的选项和选项的功能如下:
在这里插入图片描述

示例:

"""
演示 pyecharts 的基础入门
"""# 导包
from pyecharts.charts import Line
from pyecharts.options import TitleOpts, LegendOpts, ToolboxOpts,VisualMapOpts# 创建一个折线图对象
line = Line()# 给折线图对象添加 x 轴的数据
line.add_xaxis(["中国", "美国", "英国"])# 给折线图对象添加 y 轴的数据
line.add_yaxis("GDP", [30, 20, 10])# 设置全局配置项
line.set_global_opts(title_opts=TitleOpts(title="GDP展示", pos_left="center", pos_bottom="1%"),legend_opts=LegendOpts(is_show=True),toolbox_opts=ToolboxOpts(is_show=True),visualmap_opts=VisualMapOpts(is_show=True))# 通过 render 方法,将代码生成图像
line.render()

结果:
在这里插入图片描述

89、数据准备

原始数据格式

在这里插入图片描述

数据处理

导入模块:

import json

对数据进行整理,让数据符合 json 格式:

# 处理数据
f_us = open("/home/yin-roc/1-Github/Ubuntu20.04-VMware/pythonProject/Python_Learning/02_Python入门语法/可视化案例数据/折线图数据/美国.txt", "r", encoding="UTF-8")
us_data = f_us.read()   # 美国的全部内容# 去掉不合 JSON 规范的开头
us_data = us_data.replace("jsonp_1629344292311_69436(", "")# 去掉不合 JSON 规范的结尾
# us_data = us_data.replace(");", "")
us_data = us_data[:-2]# JSON 转 Python 字典
us_dict = json.loads(us_data)
# print(type(us_dict))
# print(us_dict)# 获取 trend key
trend_data = us_dict['data'][0]['trend']
# print(type(trend_data))
# print(trend_data)# 获取日期数据,用于 x 轴,取2020年(到314下标结束)
x_data = trend_data['updateDate'][:314]
# print(x_data)# 获取确认数据,用于 y 轴,取2020年(到315下标结束)
y_data = trend_data['list'][0]['data'][:314]
# print(y_data)

90、生成折线图

导入模块

from pyecharts.charts import Line
from pyecharts.options import TitleOpts, LabelOpts

折线图相关配置项

折线图相关配置项
配置项作用代码实例
init_opts对折线图初始化设置宽高init_opts=opts.InitOpts(width=“1600px”, height=“800px”)
.add_xaxis添加x轴数据.add_xaxis(列表)
.add_yaxis添加y轴数据.add_yaxis(纵坐标标题, 列表)
创建折线图

在这里插入图片描述
这里的**Line()**是构建类对象,我们先不必理解是什么意思,后续在Python高阶中进行详细讲解。

添加数据

在这里插入图片描述

.add_yaxis相关配置选项
配置项作用代码实例
series_name设置图例名称series_name=“美国确诊人数”
y_axis输入y轴数据y_axis=[“列表”]
symbol_size设置点的大小symbol_size=10
label_opts标签设置项:不显示标签label_opts=opts.LabelOpts(is_show=False)
linestyle_opts线条宽度和样式linestyle_opts=opts.LineStyleOpts(width=2)

示例:

在这里插入图片描述

效果如下:

全局配置选项(.set_global_opts)
配置项作用代码实例
title_opts设置图标题和位置title_opts=opts.TitleOpts(title=“标题”, pos_left=“center”)
yaxis_optsy轴配置项yaxis_opts=opts.AxisOpts(name=“累计确诊人数”)
xaxis_optsx轴配置项xaxis_opts=opts.AxisOpts(name=“时间”)
legend_opts图例配置项legend_opts=opts.LegendOpts(pos_left=‘70%’)

示例代码:

.set_global_opts(# 设置图标题和位置 title_opts=opts.TitleOpts(title="2020年 印🇮🇳美🇺🇸日🇯🇵 累计确诊人数对比图",pos_left="center"), # x轴配置项 xaxis_opts=opts.AxisOpts(name=“时间”),    # 轴标题 # y轴配置项 yaxis_opts=opts.AxisOpts(name=“累计确诊人数”),    # 轴标题 # 图例配置项 legend_opts=opts.LegendOpts(pos_left=‘70%‘),    # 图例的位置 
)

效果如下:

在这里插入图片描述

示例代码:

"""
演示 可视化需求1:折线图开发
"""
import json
from pyecharts.charts import Line
from pyecharts.options import TitleOpts, LabelOpts# 处理数据
f_us = open("/home/yin-roc/1-Github/Ubuntu20.04-VMware/pythonProject/Python_Learning/02_Python入门语法/可视化案例数据/折线图数据/美国.txt", "r", encoding="UTF-8")
us_data = f_us.read()   # 美国的全部内容f_jp = open("/home/yin-roc/1-Github/Ubuntu20.04-VMware/pythonProject/Python_Learning/02_Python入门语法/可视化案例数据/折线图数据/日本.txt", "r", encoding="UTF-8")
jp_data = f_jp.read()   # 日本的全部内容f_in = open("/home/yin-roc/1-Github/Ubuntu20.04-VMware/pythonProject/Python_Learning/02_Python入门语法/可视化案例数据/折线图数据/印度.txt", "r", encoding="UTF-8")
in_data = f_in.read()   # 日本的全部内容# 去掉不合 JSON 规范的开头
us_data = us_data.replace("jsonp_1629344292311_69436(", "")
jp_data = jp_data.replace("jsonp_1629350871167_29498(", "")
in_data = in_data.replace("jsonp_1629350745930_63180(", "")# 去掉不合 JSON 规范的结尾
# us_data = us_data.replace(");", "")
us_data = us_data[:-2]
jp_data = jp_data[:-2]
in_data = in_data[:-2]# JSON 转 Python 字典
us_dict = json.loads(us_data)
jp_dict = json.loads(jp_data)
in_dict = json.loads(in_data)# print(type(us_dict))
# print(us_dict)# 获取 trend key
us_trend_data = us_dict['data'][0]['trend']
jp_trend_data = jp_dict['data'][0]['trend']
in_trend_data = in_dict['data'][0]['trend']
# print(type(trend_data))
# print(trend_data)# 获取日期数据,用于 x 轴,取2020年(到314下标结束)
us_x_data = us_trend_data['updateDate'][:314]
jp_x_data = jp_trend_data['updateDate'][:314]
in_x_data = in_trend_data['updateDate'][:314]
# print(x_data)# 获取确认数据,用于 y 轴,取2020年(到315下标结束)
us_y_data = us_trend_data['list'][0]['data'][:314]
jp_y_data = jp_trend_data['list'][0]['data'][:314]
in_y_data = in_trend_data['list'][0]['data'][:314]
# print(y_data)# 生成图表
line = Line()   # 构建折线图对象# 添加 x 轴数据
line.add_xaxis(us_x_data)   # x 轴是公用的,所以使用一个国家的数据即可# 添加 y 轴数据
line.add_yaxis("美国确诊人数", us_y_data, label_opts=LabelOpts(is_show=False))
line.add_yaxis("日本确诊人数", jp_y_data, label_opts=LabelOpts(is_show=False))
line.add_yaxis("印度确诊人数", in_y_data, label_opts=LabelOpts(is_show=False))# 设置全局选项
line.set_global_opts(# 标题设置title_opts=TitleOpts(title="2020年美日印三国确诊人数对比折线图", pos_left="center", pos_bottom="1%"))# 调用 render 方法生成图表
line.render()# 关闭文件对象
f_us.close()
f_jp.close()
f_in.close()

91、数据可视化案例——地图——基础地图的使用

基础地图演示


设置颜色级别:
在这里插入图片描述
在这里插入图片描述

tips:RGB颜色查询对照表
在这里插入图片描述

这篇关于Python学习打卡:day11的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/1079448

相关文章

python进行while遍历的常见错误解析

《python进行while遍历的常见错误解析》在Python中选择合适的遍历方式需要综合考虑可读性、性能和具体需求,本文就来和大家讲解一下python中while遍历常见错误以及所有遍历方法的优缺点... 目录一、超出数组范围问题分析错误复现解决方法关键区别二、continue使用问题分析正确写法关键点三

使用Python实现调用API获取图片存储到本地的方法

《使用Python实现调用API获取图片存储到本地的方法》开发一个自动化工具,用于从JSON数据源中提取图像ID,通过调用指定API获取未经压缩的原始图像文件,并确保下载结果与Postman等工具直接... 目录使用python实现调用API获取图片存储到本地1、项目概述2、核心功能3、环境准备4、代码实现

8种快速易用的Python Matplotlib数据可视化方法汇总(附源码)

《8种快速易用的PythonMatplotlib数据可视化方法汇总(附源码)》你是否曾经面对一堆复杂的数据,却不知道如何让它们变得直观易懂?别慌,Python的Matplotlib库是你数据可视化的... 目录引言1. 折线图(Line Plot)——趋势分析2. 柱状图(Bar Chart)——对比分析3

Python模拟串口通信的示例详解

《Python模拟串口通信的示例详解》pySerial是Python中用于操作串口的第三方模块,它支持Windows、Linux、OSX、BSD等多个平台,下面我们就来看看Python如何使用pySe... 目录1.win 下载虚www.chinasem.cn拟串口2、确定串口号3、配置串口4、串口通信示例5

Python Pandas高效处理Excel数据完整指南

《PythonPandas高效处理Excel数据完整指南》在数据驱动的时代,Excel仍是大量企业存储核心数据的工具,Python的Pandas库凭借其向量化计算、内存优化和丰富的数据处理接口,成为... 目录一、环境搭建与数据读取1.1 基础环境配置1.2 数据高效载入技巧二、数据清洗核心战术2.1 缺失

利用Python实现Excel文件智能合并工具

《利用Python实现Excel文件智能合并工具》有时候,我们需要将多个Excel文件按照特定顺序合并成一个文件,这样可以更方便地进行后续的数据处理和分析,下面我们看看如何使用Python实现Exce... 目录运行结果为什么需要这个工具技术实现工具的核心功能代码解析使用示例工具优化与扩展有时候,我们需要将

Python+PyQt5实现文件夹结构映射工具

《Python+PyQt5实现文件夹结构映射工具》在日常工作中,我们经常需要对文件夹结构进行复制和备份,本文将带来一款基于PyQt5开发的文件夹结构映射工具,感兴趣的小伙伴可以跟随小编一起学习一下... 目录概述功能亮点展示效果软件使用步骤代码解析1. 主窗口设计(FolderCopyApp)2. 拖拽路径

Python使用Reflex构建现代Web应用的完全指南

《Python使用Reflex构建现代Web应用的完全指南》这篇文章为大家深入介绍了Reflex框架的设计理念,技术特性,项目结构,核心API,实际开发流程以及与其他框架的对比和部署建议,感兴趣的小伙... 目录什么是 ReFlex?为什么选择 Reflex?安装与环境配置构建你的第一个应用核心概念解析组件

Python将字符串转换为小写字母的几种常用方法

《Python将字符串转换为小写字母的几种常用方法》:本文主要介绍Python中将字符串大写字母转小写的四种方法:lower()方法简洁高效,手动ASCII转换灵活可控,str.translate... 目录一、使用内置方法 lower()(最简单)二、手动遍历 + ASCII 码转换三、使用 str.tr

Python处理超大规模数据的4大方法详解

《Python处理超大规模数据的4大方法详解》在数据的奇妙世界里,数据量就像滚雪球一样,越变越大,从最初的GB级别的小数据堆,逐渐演变成TB级别的数据大山,所以本文我们就来看看Python处理... 目录1. Mars:数据处理界的 “变形金刚”2. Dask:分布式计算的 “指挥家”3. CuPy:GPU