Meta FAIR研究新成果:图像到文本、文本到音乐的生成模型,多标记预测模型以及AI生成语音检测技术

本文主要是介绍Meta FAIR研究新成果:图像到文本、文本到音乐的生成模型,多标记预测模型以及AI生成语音检测技术,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Meta AI研究实验室(FAIR)公开发布了多项新研究成果,包括图像到文本和文本到音乐的生成模型,多词预测模型,以及检测AI生成语音的技术。发布的成果体现了开放性、协作、卓越和规模化等核心原则。公开早期研究工作旨在激发迭代,推动AI负责任发展。

  • Meta Chameleon系列模型可将文本和图像作为输入,输出任意文本和图像组合。已发布7B和34B模型的关键组件。

  • 发布多词预测预训练语言模型代码,可更高效训练语言模型。

  • 发布JASCO文本到音乐生成模型,可接受各种条件输入如音调、拍子等,改进对生成音乐的控制。

  • 发布AudioSeal,首个专为检测AI生成语音设计的音频水印技术,可实现对语音片段中的AI内容进行本地化检测。

  • 发布PRISM数据集,记录1500名参与者与21个LLM的交流及反馈,用于探索反馈过程的方法、领域和目标。

  • 发布GEO评估工具,用于评估文本到图像模型中的潜在地域差异;并探索了改进多样性的方法。

十多年来,Meta 的基础人工智能研究 (FAIR) 团队一直致力于通过开放研究推动人工智能的发展。随着该领域的创新继续快速发展,我们认为与全球人工智能社区的合作比以往任何时候都更加重要。保持开放的科学方法并与社区分享我们的工作有助于我们坚持我们的目标,即构建适合每个人并让世界更加紧密的人工智能系统。

今天,我们很高兴与全球社区分享一些最新的 FAIR 研究模型。我们公开发布了六项研究成果,重点关注我们工作的核心主题:创新、创造力、效率和责任。这些发布包括图像到文本和文本到音乐的生成模型、多标记预测模型以及用于检测 AI 生成的语音的技术。通过公开分享我们的早期研究工作,我们希望激发迭代并最终以负责任的方式帮助推动 AI 的发展。我们迫不及待地想看看社区使用这些最新版本构建了什么,并继续与开源社区进行重要的对话。

Meta Chameleon

Meta Chameleon 是一个模型系列,它可以将文本和图像组合为输入,并以单一统一的架构输出任意文本和图像组合,用于编码和解码。

虽然大多数当前的后期融合模型使用基于扩散的学习,但 Meta Chameleon 对文本和图像使用标记化。这可以实现更统一的方法,并使模型更易于设计、维护和扩展。可能性无穷无尽 - 想象一下为图像生成创意标题或使用文本提示和图像的混合来创建一个全新的场景。

Multi-Token Prediction

大多数LLM都有一个简单的训练目标:预测下一个单词。虽然这种方法简单且可扩展,但效率也很低。与孩子们学习同等程度的语言流利程度相比,它需要的文本要多几个数量级。

今年4月,我们提出了一种新的方法,通过使用多令牌预测来构建更好更快的llm。使用这种方法,我们训练语言模型一次预测多个将来单词,而不是旧的一次预测一个单词的方法。这提高了模型能力和训练效率,同时允许更快的速度。本着负责任的开放科学精神,我们在非商业/仅限研究的许可下发布了预训练的代码完成模型。我们希望这能使研究界独立地研究我们的方法和训练模型的行为。

AudioSeal

生成式 AI 工具正在激励人们在社交媒体上与朋友、家人和关注者分享自己的创作。与所有 AI 创新一样,我们必须尽自己的一份力量来帮助确保负责任地使用这些工具。今天,我们发布了 AudioSeal,我们认为这是第一种专门为局部检测 AI 生成的语音而设计的音频水印技术,可以精确定位较长音频片段中的 AI 生成的片段。AudioSeal 通过专注于检测 AI 生成的内容而不是隐写术来改进传统的音频水印。与依赖复杂解码算法的传统方法不同,AudioSeal 的局部检测方法可以实现更快、更高效的检测。与以前的方法相比,这种设计将检测速度提高了 485 倍,使其非常适合大规模和实时应用。我们的方法在音频水印的稳健性和不可感知性方面实现了最先进的性能。

AudioSeal 是根据商业许可发布的。这只是我们为防止滥用生成式 AI 工具而分享的几条负责任的研究路线之一。我们在基础文本和语音翻译模型SeamlessM4T v2和Audiobox生成的语音样本中加入了类似的水印。我们在最近的版本中进一步详细介绍了针对图像、语音和文本模型的水印方法。

JASCO:Text-to-Music

生成式人工智能使人们能够以新的方式探索创造力,例如将文本提示转换为音乐片段。虽然现有的文本转音乐模型(如MusicGen)主要依靠文本输入来生成音乐,但我们的新模型“用于时间控制文本转音乐生成的元联合音频和符号条件”(JASCO)能够接受各种条件输入,例如特定的和弦或节拍,以改善对生成的音乐输出的控制。具体来说,我们将信息瓶颈层与时间模糊结合使用,以提取与特定控制相关的信息。这允许在同一个文本转音乐生成模型中同时结合符号和基于音频的条件。

结果表明,JASCO 在生成质量方面与评估基线相当,同时允许对生成的音乐进行更好、更灵活的控制。

PRISM数据集

从多元化的人群中获取反馈对于提高 LLM 水平至关重要,但研究界对反馈过程的方法、领域和目标一直存在疑问。我们与外部合作伙伴合作解决这些问题,支持发布 PRISM 数据集,该数据集映射了来自 75 个国家/地区的 1,500 名多元化参与者的社会人口统计数据和偏好。该数据集将每个人的偏好和细粒度反馈映射到与 21 位不同 LLM 的 8,011 次实时对话中。

Meta 为我们的外部合作伙伴编制 PRISM 数据集提供了建议,重点关注以主观和多元文化观点为中心的对话,这些对话可能存在人际和跨文化分歧。我们的论文通过对话多样性、偏好多样性和福利结果三个案例研究证明了 PRISM 的实用性,表明哪些人设定了一致规范很重要。虽然我们希望这将成为社区资源,但我们也希望它能够激发人们更广泛地参与人工智能开发,并促进更具包容性的技术设计方法。

这篇关于Meta FAIR研究新成果:图像到文本、文本到音乐的生成模型,多标记预测模型以及AI生成语音检测技术的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1079322

相关文章

苹果macOS 26 Tahoe主题功能大升级:可定制图标/高亮文本/文件夹颜色

《苹果macOS26Tahoe主题功能大升级:可定制图标/高亮文本/文件夹颜色》在整体系统设计方面,macOS26采用了全新的玻璃质感视觉风格,应用于Dock栏、应用图标以及桌面小部件等多个界面... 科技媒体 MACRumors 昨日(6 月 13 日)发布博文,报道称在 macOS 26 Tahoe 中

Python实现精准提取 PDF中的文本,表格与图片

《Python实现精准提取PDF中的文本,表格与图片》在实际的系统开发中,处理PDF文件不仅限于读取整页文本,还有提取文档中的表格数据,图片或特定区域的内容,下面我们来看看如何使用Python实... 目录安装 python 库提取 PDF 文本内容:获取整页文本与指定区域内容获取页面上的所有文本内容获取

Python实现自动化Word文档样式复制与内容生成

《Python实现自动化Word文档样式复制与内容生成》在办公自动化领域,高效处理Word文档的样式和内容复制是一个常见需求,本文将展示如何利用Python的python-docx库实现... 目录一、为什么需要自动化 Word 文档处理二、核心功能实现:样式与表格的深度复制1. 表格复制(含样式与内容)2

Java中的登录技术保姆级详细教程

《Java中的登录技术保姆级详细教程》:本文主要介绍Java中登录技术保姆级详细教程的相关资料,在Java中我们可以使用各种技术和框架来实现这些功能,文中通过代码介绍的非常详细,需要的朋友可以参考... 目录1.登录思路2.登录标记1.会话技术2.会话跟踪1.Cookie技术2.Session技术3.令牌技

python如何生成指定文件大小

《python如何生成指定文件大小》:本文主要介绍python如何生成指定文件大小的实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录python生成指定文件大小方法一(速度最快)方法二(中等速度)方法三(生成可读文本文件–较慢)方法四(使用内存映射高效生成

详解如何使用Python从零开始构建文本统计模型

《详解如何使用Python从零开始构建文本统计模型》在自然语言处理领域,词汇表构建是文本预处理的关键环节,本文通过Python代码实践,演示如何从原始文本中提取多尺度特征,并通过动态调整机制构建更精确... 目录一、项目背景与核心思想二、核心代码解析1. 数据加载与预处理2. 多尺度字符统计3. 统计结果可

Python中OpenCV与Matplotlib的图像操作入门指南

《Python中OpenCV与Matplotlib的图像操作入门指南》:本文主要介绍Python中OpenCV与Matplotlib的图像操作指南,本文通过实例代码给大家介绍的非常详细,对大家的学... 目录一、环境准备二、图像的基本操作1. 图像读取、显示与保存 使用OpenCV操作2. 像素级操作3.

C/C++的OpenCV 进行图像梯度提取的几种实现

《C/C++的OpenCV进行图像梯度提取的几种实现》本文主要介绍了C/C++的OpenCV进行图像梯度提取的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录预www.chinasem.cn备知识1. 图像加载与预处理2. Sobel 算子计算 X 和 Y

c/c++的opencv图像金字塔缩放实现

《c/c++的opencv图像金字塔缩放实现》本文主要介绍了c/c++的opencv图像金字塔缩放实现,通过对原始图像进行连续的下采样或上采样操作,生成一系列不同分辨率的图像,具有一定的参考价值,感兴... 目录图像金字塔简介图像下采样 (cv::pyrDown)图像上采样 (cv::pyrUp)C++ O

Maven项目中集成数据库文档生成工具的操作步骤

《Maven项目中集成数据库文档生成工具的操作步骤》在Maven项目中,可以通过集成数据库文档生成工具来自动生成数据库文档,本文为大家整理了使用screw-maven-plugin(推荐)的完... 目录1. 添加插件配置到 pom.XML2. 配置数据库信息3. 执行生成命令4. 高级配置选项5. 注意事