caffe:math_functions 分析

2024-06-20 19:32
文章标签 分析 math caffe functions

本文主要是介绍caffe:math_functions 分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

  • 目录
    • 主要函数
      • caffe_cpu_gemm 函数
      • caffe_cpu_gemv 函数
      • caffe_axpy 函数
      • caffe_set 函数
      • caffe_add_scalar 函数
      • caffe_copy 函数
      • caffe_scal 函数
      • caffeine_cup_axpby 函数
      • caffe_add caffe_sub caffe_mul caffe_div 函数
      • caffe_powx caffe_sqr caffe_exp caffe_abs 函数
      • int caffe_rng_rand 函数
      • caffe_nextafer 函数
      • caffe_cpu_strided_dot 函数
      • caffe_cpu_hamming_distance 函数
      • caffe_cpu_asum 函数
      • caffe_cpu_scale 函数

主要函数

math_function 定义了caffe 中用到的一些矩阵操作和数值计算的一些函数,这里以float类型为例做简单的分析

1. caffe_cpu_gemm 函数:

template<>
void caffe_cpu_gemm<float>(const CBLAS_TRANSPOSE TransA,const CBLAS_TRANSPOSE TransB, const int M, const int N, const int K,const float alpha, const float* A, const float* B, const float beta,float* C) {int lda = (TransA == CblasNoTrans) ? K : M;int ldb = (TransB == CblasNoTrans) ? N : K;cblas_sgemm(CblasRowMajor, TransA, TransB, M, N, K, alpha, A, lda, B,ldb, beta, C, N);
}

功能: C=alpha*A*B+beta*C
A,B,C 是输入矩阵(一维数组格式)
CblasRowMajor :数据是行主序的(二维数据也是用一维数组储存的)
TransA, TransB:是否要对A和B做转置操作(CblasTrans CblasNoTrans)
M: A、C 的行数
N: B、C 的列数
K: A 的列数, B 的行数
lda : A的列数(不做转置)行数(做转置)
ldb: B的列数(不做转置)行数(做转置)

2. caffe_cpu_gemv 函数:

template <>
void caffe_cpu_gemv<float>(const CBLAS_TRANSPOSE TransA, const int M,const int N, const float alpha, const float* A, const float* x,const float beta, float* y) {cblas_sgemv(CblasRowMajor, TransA, M, N, alpha, A, N, x, 1, beta, y, 1);
}

功能: y=alpha*A*x+beta*y
其中X和Y是向量,A 是矩阵
M:A 的行数
N:A 的列数
cblas_sgemv 中的 参数1 表示对X和Y的每个元素都进行操作

3.caffe_axpy 函数:

template <>
void caffe_axpy<float>(const int N, const float alpha, const float* X,float* Y) { cblas_saxpy(N, alpha, X, 1, Y, 1); }

功能: Y=alpha*X+Y
N:为X和Y中element的个数

4.caffe_set 函数:

template <typename Dtype>
void caffe_set(const int N, const Dtype alpha, Dtype* Y) {if (alpha == 0) {memset(Y, 0, sizeof(Dtype) * N);  // NOLINT(caffe/alt_fn)return;}for (int i = 0; i < N; ++i) {Y[i] = alpha; }
}

功能:用常数 alpha 对 Y 进行初始化
函数 void *memset(void *buffer, char c, unsigned count) 一般为新申请的内存做初始化,功能是将buffer所指向内存中的每个字节的内容全部设置为c指定的ASCII值, count为块的大小

5.caffe_add_scalar 函数:

template <>
void caffe_add_scalar(const int N, const float alpha, float* Y) {for (int i = 0; i < N; ++i) {Y[i] += alpha;}
}

功能: 给 Y 的每个 element 加上常数 alpha

6.caffe_copy 函数:

template <typename Dtype>
void caffe_copy(const int N, const Dtype* X, Dtype* Y) {if (X != Y) {if (Caffe::mode() == Caffe::GPU) {
#ifndef CPU_ONLY// NOLINT_NEXT_LINE(caffe/alt_fn)CUDA_CHECK(cudaMemcpy(Y, X, sizeof(Dtype) * N, cudaMemcpyDefault));
#elseNO_GPU;
#endif} else {memcpy(Y, X, sizeof(Dtype) * N);  // NOLINT(caffe/alt_fn)}}
}

函数 void *memcpy(void *dest, void *src, unsigned int count) 把src所指向的内存区域 copy到dest所指向的内存区域, count为块的大小

7.caffe_scal 函数:

template <>
void caffe_scal<float>(const int N, const float alpha, float *X) {cblas_sscal(N, alpha, X, 1);
}

功能:X = alpha*X
N: X中element的个数

8.caffeine_cup_axpby 函数:

template <>
void caffe_cpu_axpby<float>(const int N, const float alpha, const float* X,const float beta, float* Y) {cblas_saxpby(N, alpha, X, 1, beta, Y, 1);
}

功能:Y= alpha*X+beta*Y

9.caffe_add、 caffe_sub、 caffe_mul、 caffe_div 函数:

template <>
void caffe_add<float>(const int n, const float* a, const float* b,float* y) {vsAdd(n, a, b, y);
}
template <>
void caffe_sub<float>(const int n, const float* a, const float* b,float* y) {vsSub(n, a, b, y);
}template <>
void caffe_mul<float>(const int n, const float* a, const float* b,float* y) {vsMul(n, a, b, y);
}template <>
void caffe_div<float>(const int n, const float* a, const float* b,float* y) {vsDiv(n, a, b, y);
}

功能:这四个函数分别实现element-wise的加减乘除(y[i] = a[i] + - * \ b[i])

10.caffe_powx、 caffe_sqr、 caffe_exp、 caffe_abs 函数:

template <>
void caffe_powx<float>(const int n, const float* a, const float b,float* y) {vsPowx(n, a, b, y);
}template <>
void caffe_sqr<float>(const int n, const float* a, float* y) {vsSqr(n, a, y);
}template <>
void caffe_exp<float>(const int n, const float* a, float* y) {vsExp(n, a, y);
}template <>
void caffe_abs<float>(const int n, const float* a, float* y) {vsAbs(n, a, y);
}

功能 : 同样是element-wise操作,分别是y[i] = a[i] ^ b, y[i] = a[i]^2,y[i] = exp(a[i] ),y[i] = |a[i] |

11.int caffe_rng_rand 函数:

unsigned int caffe_rng_rand() {return (*caffe_rng())();
}

功能:返回一个随机数

12.caffe_nextafer 函数:

template <typename Dtype>
Dtype caffe_nextafter(const Dtype b) {return boost::math::nextafter<Dtype>(b, std::numeric_limits<Dtype>::max());
}

功能 : 返回 b 最大方向上可以表示的最接近的数值。

13.caffe_cpu_strided_dot 函数:

template <>
double caffe_cpu_strided_dot<double>(const int n, const double* x,const int incx, const double* y, const int incy) {return cblas_ddot(n, x, incx, y, incy);
}

功能: 返回 vector X 和 vector Y 的内积。
incx, incy : 步长,即每隔incx 或 incy 个element 进行操作。

14.caffe_cpu_hamming_distance 函数:

template <>
int caffe_cpu_hamming_distance<float>(const int n, const float* x,const float* y) {int dist = 0;for (int i = 0; i < n; ++i) {dist += __builtin_popcount(static_cast<uint32_t>(x[i]) ^static_cast<uint32_t>(y[i]));}return dist;
}

功能:返回 x 和 y 之间的海明距离。(两个等长字符串之间的海明距离是两个字符串对应位置的不同字符的个数。)

15. caffe_cpu_asum 函数:

template <>
float caffe_cpu_asum<float>(const int n, const float* x) {return cblas_sasum(n, x, 1);
}

功能:计算 vector x 的所有element的绝对值之和。

16.caffe_cpu_scale 函数:

template <>
void caffe_cpu_scale<float>(const int n, const float alpha, const float *x,float* y) {cblas_scopy(n, x, 1, y, 1);cblas_sscal(n, alpha, y, 1);
}

功能:y = alpha*x


原文链接: http://blog.csdn.net/seven_first/article/details/47378697#4caffeset-函数

这篇关于caffe:math_functions 分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1079051

相关文章

Android 缓存日志Logcat导出与分析最佳实践

《Android缓存日志Logcat导出与分析最佳实践》本文全面介绍AndroidLogcat缓存日志的导出与分析方法,涵盖按进程、缓冲区类型及日志级别过滤,自动化工具使用,常见问题解决方案和最佳实... 目录android 缓存日志(Logcat)导出与分析全攻略为什么要导出缓存日志?按需过滤导出1. 按

Linux中的HTTPS协议原理分析

《Linux中的HTTPS协议原理分析》文章解释了HTTPS的必要性:HTTP明文传输易被篡改和劫持,HTTPS通过非对称加密协商对称密钥、CA证书认证和混合加密机制,有效防范中间人攻击,保障通信安全... 目录一、什么是加密和解密?二、为什么需要加密?三、常见的加密方式3.1 对称加密3.2非对称加密四、

MySQL中读写分离方案对比分析与选型建议

《MySQL中读写分离方案对比分析与选型建议》MySQL读写分离是提升数据库可用性和性能的常见手段,本文将围绕现实生产环境中常见的几种读写分离模式进行系统对比,希望对大家有所帮助... 目录一、问题背景介绍二、多种解决方案对比2.1 原生mysql主从复制2.2 Proxy层中间件:ProxySQL2.3

python使用Akshare与Streamlit实现股票估值分析教程(图文代码)

《python使用Akshare与Streamlit实现股票估值分析教程(图文代码)》入职测试中的一道题,要求:从Akshare下载某一个股票近十年的财务报表包括,资产负债表,利润表,现金流量表,保存... 目录一、前言二、核心知识点梳理1、Akshare数据获取2、Pandas数据处理3、Matplotl

python panda库从基础到高级操作分析

《pythonpanda库从基础到高级操作分析》本文介绍了Pandas库的核心功能,包括处理结构化数据的Series和DataFrame数据结构,数据读取、清洗、分组聚合、合并、时间序列分析及大数据... 目录1. Pandas 概述2. 基本操作:数据读取与查看3. 索引操作:精准定位数据4. Group

MySQL中EXISTS与IN用法使用与对比分析

《MySQL中EXISTS与IN用法使用与对比分析》在MySQL中,EXISTS和IN都用于子查询中根据另一个查询的结果来过滤主查询的记录,本文将基于工作原理、效率和应用场景进行全面对比... 目录一、基本用法详解1. IN 运算符2. EXISTS 运算符二、EXISTS 与 IN 的选择策略三、性能对比

MySQL 内存使用率常用分析语句

《MySQL内存使用率常用分析语句》用户整理了MySQL内存占用过高的分析方法,涵盖操作系统层确认及数据库层bufferpool、内存模块差值、线程状态、performance_schema性能数据... 目录一、 OS层二、 DB层1. 全局情况2. 内存占js用详情最近连续遇到mysql内存占用过高导致

深度解析Nginx日志分析与499状态码问题解决

《深度解析Nginx日志分析与499状态码问题解决》在Web服务器运维和性能优化过程中,Nginx日志是排查问题的重要依据,本文将围绕Nginx日志分析、499状态码的成因、排查方法及解决方案展开讨论... 目录前言1. Nginx日志基础1.1 Nginx日志存放位置1.2 Nginx日志格式2. 499

Olingo分析和实践之EDM 辅助序列化器详解(最佳实践)

《Olingo分析和实践之EDM辅助序列化器详解(最佳实践)》EDM辅助序列化器是ApacheOlingoOData框架中无需完整EDM模型的智能序列化工具,通过运行时类型推断实现灵活数据转换,适用... 目录概念与定义什么是 EDM 辅助序列化器?核心概念设计目标核心特点1. EDM 信息可选2. 智能类

Olingo分析和实践之OData框架核心组件初始化(关键步骤)

《Olingo分析和实践之OData框架核心组件初始化(关键步骤)》ODataSpringBootService通过初始化OData实例和服务元数据,构建框架核心能力与数据模型结构,实现序列化、URI... 目录概述第一步:OData实例创建1.1 OData.newInstance() 详细分析1.1.1