使用MapReduce实现knn算法

2024-06-20 18:18

本文主要是介绍使用MapReduce实现knn算法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

算法的流程

(1)首先将训练集以共享文件的方式分发到各个map节点

(2)每一个map节点主要<LongWritable ,Text,,LongWritable,ListWritable<DoubleWritable>> LongWritable 主要就是文件的偏移地址,保证唯一。ListWritable主要就是最近的类别。

Reduce节点主要计算出,每一个要预测节点的类别。

package knn;


public class Distance {

public static double EuclideanDistance(double[] a, double[] b)
throws Exception {
if (a.length != b.length)
throw new Exception("size not compatible!");
double sum = 0.0;
for (int i = 0; i < a.length; i++) {
sum += Math.pow(a[i] - b[i], 2);
}
return Math.sqrt(sum);
}
}

package knn;


import java.io.BufferedReader;


/**
 * KNearestNeigbour Classifier each instance in training set is of form
 * a1,a2,a3...an,l1 in which l1 represents the label. and each instance in
 * predict set is of form a1,a2,a3...an,-1,in which -1 is the label we want to
 * specify. In my algorithm,I assume that the trainning set is relatively small
 * so we can load them in memory and the predict set is large another thing we
 * need to pay attention to is that all our test instances are all in one file
 * so that the index of line is unique to each instance.
 * 
 */
public class KNearestNeighbour {
public static class KNNMap
extends
Mapper<LongWritable, Text, LongWritable, ListWritable<DoubleWritable>> {
private int k;
private ArrayList<Instance> trainSet;


@Override
protected void setup(Context context) throws IOException,
InterruptedException {
k = context.getConfiguration().getInt("k", 1);
trainSet = new ArrayList<Instance>();


Path[] trainFile = DistributedCache.getLocalCacheFiles(context
.getConfiguration());
// add all the tranning instances into attributes
BufferedReader br = null;
String line;
for (int i = 0; i < trainFile.length; i++) {
br = new BufferedReader(new FileReader(trainFile[0].toString()));
while ((line = br.readLine()) != null) {
Instance trainInstance = new Instance(line);
System.out.println(trainInstance.toString());
trainSet.add(trainInstance);
}
}
}


/**
* find the nearest k labels and put them in an object of type
* ListWritable. and emit <textIndex,lableList>
*/
@Override
public void map(LongWritable textIndex, Text textLine, Context context)
throws IOException, InterruptedException {
System.out.println(textLine.toString());
// distance stores all the current nearst distance value
// . trainLable store the corresponding lable
ArrayList<Double> distance = new ArrayList<Double>(k);
ArrayList<DoubleWritable> trainLable = new ArrayList<DoubleWritable>(
k);
for (int i = 0; i < k; i++) {
distance.add(Double.MAX_VALUE);
trainLable.add(new DoubleWritable(-1.0));
}
ListWritable<DoubleWritable> lables = new ListWritable<DoubleWritable>(
DoubleWritable.class);
Instance testInstance = new Instance(textLine.toString());
for (int i = 0; i < trainSet.size(); i++) {
try {
double dis = Distance.EuclideanDistance(trainSet.get(i)
.getAtrributeValue(), testInstance
.getAtrributeValue());
int index = indexOfMax(distance);
if (dis < distance.get(index)) {
distance.remove(index);
trainLable.remove(index);
distance.add(dis);
trainLable.add(new DoubleWritable(trainSet.get(i)
.getLable()));
}
} catch (Exception e) {
e.printStackTrace();
}
}
lables.setList(trainLable);
context.write(textIndex, lables);
}


/**
* return the index of the maximum number of an array

* @param array
* @return
*/
public int indexOfMax(ArrayList<Double> array) {
int index = -1;
Double min = Double.MIN_VALUE;
for (int i = 0; i < array.size(); i++) {
if (array.get(i) > min) {
min = array.get(i);
index = i;
}
}
return index;
}
}


public static class KNNReduce
extends
Reducer<LongWritable, ListWritable<DoubleWritable>, NullWritable, DoubleWritable> {


@Override
public void reduce(LongWritable index,
Iterable<ListWritable<DoubleWritable>> kLables, Context context)
throws IOException, InterruptedException {
/**
* each index can actually have one list because of the assumption
* that the particular line index is unique to one instance.
*/
DoubleWritable predictedLable = new DoubleWritable();
for (ListWritable<DoubleWritable> val : kLables) {
try {
predictedLable = valueOfMostFrequent(val);
break;
} catch (Exception e) {
// TODO Auto-generated catch block
e.printStackTrace();
}
}
context.write(NullWritable.get(), predictedLable);
}


public DoubleWritable valueOfMostFrequent(
ListWritable<DoubleWritable> list) throws Exception {
if (list.isEmpty())
throw new Exception("list is empty!");
else {
HashMap<DoubleWritable, Integer> tmp = new HashMap<DoubleWritable, Integer>();
for (int i = 0; i < list.size(); i++) {
if (tmp.containsKey(list.get(i))) {
Integer frequence = tmp.get(list.get(i)) + 1;
tmp.remove(list.get(i));
tmp.put(list.get(i), frequence);
} else {
tmp.put(list.get(i), new Integer(1));
}
}
// find the value with the maximum frequence.
DoubleWritable value = new DoubleWritable();
Integer frequence = new Integer(Integer.MIN_VALUE);
Iterator<Entry<DoubleWritable, Integer>> iter = tmp.entrySet()
.iterator();
while (iter.hasNext()) {
Map.Entry<DoubleWritable, Integer> entry = (Map.Entry<DoubleWritable, Integer>) iter
.next();
if (entry.getValue() > frequence) {
frequence = entry.getValue();
value = entry.getKey();
}
}
return value;
}
}
}


public static void main(String[] args) throws IOException,
InterruptedException, ClassNotFoundException {
Job kNNJob = new Job();
kNNJob.setJobName("kNNJob");
kNNJob.setJarByClass(KNearestNeighbour.class);
DistributedCache.addCacheFile(URI.create(args[2]), kNNJob
.getConfiguration());
kNNJob.getConfiguration().setInt("k", Integer.parseInt(args[3]));


kNNJob.setMapperClass(KNNMap.class);
kNNJob.setMapOutputKeyClass(LongWritable.class);
kNNJob.setMapOutputValueClass(ListWritable.class);


kNNJob.setReducerClass(KNNReduce.class);
kNNJob.setOutputKeyClass(NullWritable.class);
kNNJob.setOutputValueClass(DoubleWritable.class);


kNNJob.setInputFormatClass(TextInputFormat.class);
kNNJob.setOutputFormatClass(TextOutputFormat.class);
FileInputFormat.addInputPath(kNNJob, new Path(args[0]));
FileOutputFormat.setOutputPath(kNNJob, new Path(args[1]));


kNNJob.waitForCompletion(true);
System.out.println("finished!");
}
}

package knn;


public class Instance {
private double[] attributeValue;
private double lable;


/**
* a line of form a1 a2 ...an lable

* @param line
*/
public Instance(String line) {
System.out.println(line);
String[] value = line.split(" ");
attributeValue = new double[value.length - 1];
for (int i = 0; i < attributeValue.length; i++) {
attributeValue[i] = Double.parseDouble(value[i]);
System.out.print(attributeValue[i] + "\t");
}
lable = Double.parseDouble(value[value.length - 1]);
System.out.println(lable);
}


public double[] getAtrributeValue() {
return attributeValue;
}


public double getLable() {
return lable;
}
}

package knn;


import java.io.DataInput;


public class ListWritable<T extends Writable> implements Writable {
private List<T> list;
private Class<T> clazz;


public ListWritable() {
list = null;
clazz = null;
}


public ListWritable(Class<T> clazz) {
this.clazz = clazz;
list = new ArrayList<T>();
}


public void setList(List<T> list) {
this.list = list;
}


public boolean isEmpty() {
return list.isEmpty();
}


public int size() {
return list.size();
}


public void add(T element) {
list.add(element);
}


public void add(int index, T element) {
list.add(index, element);
}


public T get(int index) {
return list.get(index);
}


public T remove(int index) {
return list.remove(index);
}


public void set(int index, T element) {
list.set(index, element);
}


@Override
public void write(DataOutput out) throws IOException {
out.writeUTF(clazz.getName());
out.writeInt(list.size());
for (T element : list) {
element.write(out);
}
}


@SuppressWarnings("unchecked")
@Override
public void readFields(DataInput in) throws IOException {
try {
clazz = (Class<T>) Class.forName(in.readUTF());
} catch (ClassNotFoundException e1) {
// TODO Auto-generated catch block
e1.printStackTrace();
}
int count = in.readInt();
this.list = new ArrayList<T>();
for (int i = 0; i < count; i++) {
try {
T obj = clazz.newInstance();
obj.readFields(in);
list.add(obj);
} catch (InstantiationException e) {
e.printStackTrace();
} catch (IllegalAccessException e) {
e.printStackTrace();
}
}
}


}


训练集

1.0 2.0 3.0 1
1.0 2.1 3.1 1
0.9 2.2 2.9 1
3.4 6.7 8.9 2
3.0 7.0 8.7 2
3.3 6.9 8.8 2
2.5 3.3 10.0 3
2.4 2.9 8.0 3

这篇关于使用MapReduce实现knn算法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1078890

相关文章

使用Python实现IP地址和端口状态检测与监控

《使用Python实现IP地址和端口状态检测与监控》在网络运维和服务器管理中,IP地址和端口的可用性监控是保障业务连续性的基础需求,本文将带你用Python从零打造一个高可用IP监控系统,感兴趣的小伙... 目录概述:为什么需要IP监控系统使用步骤说明1. 环境准备2. 系统部署3. 核心功能配置系统效果展

Python实现微信自动锁定工具

《Python实现微信自动锁定工具》在数字化办公时代,微信已成为职场沟通的重要工具,但临时离开时忘记锁屏可能导致敏感信息泄露,下面我们就来看看如何使用Python打造一个微信自动锁定工具吧... 目录引言:当微信隐私遇到自动化守护效果展示核心功能全景图技术亮点深度解析1. 无操作检测引擎2. 微信路径智能获

使用Java将各种数据写入Excel表格的操作示例

《使用Java将各种数据写入Excel表格的操作示例》在数据处理与管理领域,Excel凭借其强大的功能和广泛的应用,成为了数据存储与展示的重要工具,在Java开发过程中,常常需要将不同类型的数据,本文... 目录前言安装免费Java库1. 写入文本、或数值到 Excel单元格2. 写入数组到 Excel表格

redis中使用lua脚本的原理与基本使用详解

《redis中使用lua脚本的原理与基本使用详解》在Redis中使用Lua脚本可以实现原子性操作、减少网络开销以及提高执行效率,下面小编就来和大家详细介绍一下在redis中使用lua脚本的原理... 目录Redis 执行 Lua 脚本的原理基本使用方法使用EVAL命令执行 Lua 脚本使用EVALSHA命令

Python中pywin32 常用窗口操作的实现

《Python中pywin32常用窗口操作的实现》本文主要介绍了Python中pywin32常用窗口操作的实现,pywin32主要的作用是供Python开发者快速调用WindowsAPI的一个... 目录获取窗口句柄获取最前端窗口句柄获取指定坐标处的窗口根据窗口的完整标题匹配获取句柄根据窗口的类别匹配获取句

Java 中的 @SneakyThrows 注解使用方法(简化异常处理的利与弊)

《Java中的@SneakyThrows注解使用方法(简化异常处理的利与弊)》为了简化异常处理,Lombok提供了一个强大的注解@SneakyThrows,本文将详细介绍@SneakyThro... 目录1. @SneakyThrows 简介 1.1 什么是 Lombok?2. @SneakyThrows

在 Spring Boot 中实现异常处理最佳实践

《在SpringBoot中实现异常处理最佳实践》本文介绍如何在SpringBoot中实现异常处理,涵盖核心概念、实现方法、与先前查询的集成、性能分析、常见问题和最佳实践,感兴趣的朋友一起看看吧... 目录一、Spring Boot 异常处理的背景与核心概念1.1 为什么需要异常处理?1.2 Spring B

Python位移操作和位运算的实现示例

《Python位移操作和位运算的实现示例》本文主要介绍了Python位移操作和位运算的实现示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录1. 位移操作1.1 左移操作 (<<)1.2 右移操作 (>>)注意事项:2. 位运算2.1

如何在 Spring Boot 中实现 FreeMarker 模板

《如何在SpringBoot中实现FreeMarker模板》FreeMarker是一种功能强大、轻量级的模板引擎,用于在Java应用中生成动态文本输出(如HTML、XML、邮件内容等),本文... 目录什么是 FreeMarker 模板?在 Spring Boot 中实现 FreeMarker 模板1. 环

Qt实现网络数据解析的方法总结

《Qt实现网络数据解析的方法总结》在Qt中解析网络数据通常涉及接收原始字节流,并将其转换为有意义的应用层数据,这篇文章为大家介绍了详细步骤和示例,感兴趣的小伙伴可以了解下... 目录1. 网络数据接收2. 缓冲区管理(处理粘包/拆包)3. 常见数据格式解析3.1 jsON解析3.2 XML解析3.3 自定义