Hadoop2.0的HDFS的改进

2024-06-20 18:18
文章标签 hdfs 改进 hadoop2.0

本文主要是介绍Hadoop2.0的HDFS的改进,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

http://dongxicheng.org/mapreduce/hdfs-federation-introduction/

HDFS Federation是Hadoop最新发布版本Hadoop-0.23.0中为解决HDFS单点故障而提出的namenode水平扩展方案。该方案允许HDFS创建多个namespace以提高集群的扩展性和隔离性。本篇文章主要介绍了HDFS Federation的设计动机和基本原理。

1. 当前HDFS概况

1.1 当前HDFS架构

当前HDFS包含两层结构:

(1) Namespace 管理目录,文件和数据块。它支持常见的文件系统操作,如创建文件,修改文件,删除文件等。

(2) Block Storage有两部分组成:

Block Management维护集群中datanode的基本关系,它支持数据块相关的操作,如:创建数据块,删除数据块等,同时,它也会管理副本的复制和存放。

Physical Storage存储实际的数据块并提供针对数据块的读写服务。

【Block Storage的这两部分分别在namenode和datanode上实现,所以该模块由namenode和datanode分工完成】

当前HDFS架构只允许整个集群中存在一个namespace,而该namespace被仅有的一个namenode管理。这个架构使得HDFS非常容易实现,但是,它(见上图)在具体实现过程中会出现一些模糊点,进而导致了很多局限性(下面将要详细说明),当然这些局限性只有在拥有大集群的公司,像baidu,腾讯等出现。

1.2 当前HDFS局限性
【Block Storage和namespace高耦合】

当前namenode中的namespace和block management的结合使得这两层架构耦合在一起,难以让其他可能namenode实现方案直接使用block storage。

【namenode扩展性】

HDFS的底层存储是可以水平扩展的(解释:底层存储指的是datanode,当集群存储空间不够时,可简单的添加机器已进行水平扩展),但namespace不可以。当前的namespace只能存放在单个namenode上,而namenode在内存中存储了整个分布式文件系统中的元数据信息,这限制了集群中数据块,文件和目录的数目。

【性能】

文件操作的性能制约于单个namenode的吞吐量,单个namenode当前仅支持约60K的task,而下一代Apache MapReduce将支持多余100K的并发任务,这隐含着要支持多个namenode。

【隔离性】

现在大部分公司的集群都是共享的,每天有来自不同group的不同用户提交作业。单个namenode难以提供隔离性,即:某个用户提交的负载很大的job会减慢其他用户的job,单一的namenode难以像HBase按照应用类别将不同作业分派到不同namenode上。

2. HDFS Federation

2.1  为什么采用Federation

采用Federation的最主要原因是简单,Federation能够快速的解决了大部分单Namenode的问题。

Federation 整个核心设计实现大概用了4个月。大部分改变是在Datanode、Config和Tools,而Namenode本身的改动非常少,这样 Namenode原先的鲁棒性不会受到影响。这使得该方案与之前的HDFS版本兼容。

2.2  Federation架构

为了水平扩展namenode,federation使用了多个独立的namenode/namespace。这些namenode之间是联合的,也就是说,他们之间相互独立且不需要互相协调,各自分工,管理自己的区域。分布式的datanode被用作通用的数据块存储存储设备。每个datanode要向集群中所有的namenode注册,且周期性地向所有namenode发送心跳和块报告,并执行来自所有namenode的命令。

一个block pool由属于同一个namespace的数据块组成,每个datanode可能会存储集群中所有block pool的数据块。

每个block pool内部自治,也就是说各自管理各自的block,不会与其他block pool交流。一个namenode挂掉了,不会影响其他namenode。

某个namenode上的namespace和它对应的block pool一起被称为namespace volume。它是管理的基本单位。当一个namenode/nodespace被删除后,其所有datanode上对应的block pool也会被删除。当集群升级时,每个namespace volume作为一个基本单元进行升级。

2.3  Federation关键技术点
【命名空间管理】

Federation中存在多个命名空间,如何划分和管理这些命名空间非常关键。在Federation中并采用“文件名hash”的方法,因为该方法的locality非常差,比如:查看某个目录下面的文件,如果采用文件名hash的方法存放文件,则这些文件可能被放到不同namespace中,HDFS需要访问所有namespace,代价过大。为了方便管理多个命名空间,HDFS Federation采用了经典的Client Side Mount Table。

如上图所示,下面四个深色三角形代表一个独立的命名空间,上方浅色的三角形代表从客户角度去访问的子命名空间。各个深色的命名空间Mount到浅色的表中,客户可以访问不同的挂载点来访问不同的命名空间,这就如同在Linux系统中访问不同挂载点一样。这就是HDFS Federation中命名空间管理的基本原理:将各个命名空间挂载到全局mount-table中,就可以做将数据到全局共享;同样的命名空间挂载到个人的mount-table中,这就成为应用程序可见的命名空间视图。

更多关于Client Side Mount Table的原理,可参考:

Plan 9:http://portal.acm.org/citation.cfm?id=506413&dl=GUIDE&coll=GUIDE&CFID=82715774&CFTOKEN=20109739

The Per-Process View of Naming and Remote Execution:http://portal.acm.org/citation.cfm?id=613822

The Spring system:http://www2.informatik.hu-berlin.de/~mint/Library/Spring/spring-namingpolicy.ps

【Block Pool管理】

具体可参考文献【首要参考资料】之【2】【3】。

2.4  主要优点
【扩展性和隔离性】

支持多个namenode水平扩展整个文件系统的namespace。可按照应用程序的用户和种类分离namespace volume,进而增强了隔离性。

【通用存储服务】

Block Pool抽象层为HDFS的架构开启了创新之门。分离block storage layer使得:

<1> 新的文件系统(non-HDFS)可以在block storage上构建

<2> 新的应用程序(如HBase)可以直接使用block storage层

<3> 分离的block storage层为将来完全分布式namespace打下基础

【设计简单】

Federation 整个核心设计实现大概用了4个月。大部分改变是在Datanode、Config和Tools中,而Namenode本身的改动非常少,这样 Namenode原先的鲁棒性不会受到影响。虽然这种实现的扩展性比起真正的分布式的Namenode要小些,但是可以迅速满足需求,另外Federation具有良好的向后兼容性,已有的单Namenode的部署配置不需要任何改变就可以继续工作

3. HDFS Federation不足

【单点故障问题】

HDFS Federation并没有完全解决单点故障问题。虽然namenode/namespace存在多个,但是从单个namenode/namespace看,仍然存在单点故障:如果某个namenode挂掉了,其管理的相应的文件便不可以访问。Federation中每个namenode仍然像之前HDFS上实现一样,配有一个secondary namenode,以便主namenode挂掉一下,用于还原元数据信息。

【负载均衡问题】

HDFS Federation采用了Client Side Mount Table分摊文件和负载,该方法更多的需要人工介入已达到理想的负载均衡。

这篇关于Hadoop2.0的HDFS的改进的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1078885

相关文章

macOS Sequoia 15.5 发布: 改进邮件和屏幕使用时间功能

《macOSSequoia15.5发布:改进邮件和屏幕使用时间功能》经过常规Beta测试后,新的macOSSequoia15.5现已公开发布,但重要的新功能将被保留到WWDC和... MACOS Sequoia 15.5 正式发布!本次更新为 Mac 用户带来了一系列功能强化、错误修复和安全性提升,进一步增

SpringBoot操作spark处理hdfs文件的操作方法

《SpringBoot操作spark处理hdfs文件的操作方法》本文介绍了如何使用SpringBoot操作Spark处理HDFS文件,包括导入依赖、配置Spark信息、编写Controller和Ser... 目录SpringBoot操作spark处理hdfs文件1、导入依赖2、配置spark信息3、cont

HDFS—存储优化(纠删码)

纠删码原理 HDFS 默认情况下,一个文件有3个副本,这样提高了数据的可靠性,但也带来了2倍的冗余开销。 Hadoop3.x 引入了纠删码,采用计算的方式,可以节省约50%左右的存储空间。 此种方式节约了空间,但是会增加 cpu 的计算。 纠删码策略是给具体一个路径设置。所有往此路径下存储的文件,都会执行此策略。 默认只开启对 RS-6-3-1024k

HDFS—集群扩容及缩容

白名单:表示在白名单的主机IP地址可以,用来存储数据。 配置白名单步骤如下: 1)在NameNode节点的/opt/module/hadoop-3.1.4/etc/hadoop目录下分别创建whitelist 和blacklist文件 (1)创建白名单 [lytfly@hadoop102 hadoop]$ vim whitelist 在whitelist中添加如下主机名称,假如集群正常工作的节

一种改进的red5集群方案的应用、基于Red5服务器集群负载均衡调度算法研究

转自: 一种改进的red5集群方案的应用: http://wenku.baidu.com/link?url=jYQ1wNwHVBqJ-5XCYq0PRligp6Y5q6BYXyISUsF56My8DP8dc9CZ4pZvpPz1abxJn8fojMrL0IyfmMHStpvkotqC1RWlRMGnzVL1X4IPOa_  基于Red5服务器集群负载均衡调度算法研究 http://ww

argodb自定义函数读取hdfs文件的注意点,避免FileSystem已关闭异常

一、问题描述 一位同学反馈,他写的argo存过中调用了一个自定义函数,函数会加载hdfs上的一个文件,但有些节点会报FileSystem closed异常,同时有时任务会成功,有时会失败。 二、问题分析 argodb的计算引擎是基于spark的定制化引擎,对于自定义函数的调用跟hive on spark的是一致的。udf要通过反射生成实例,然后迭代调用evaluate。通过代码分析,udf在

YOLOv8改进实战 | 注意力篇 | 引入CVPR2024 PKINet 上下文锚点注意力CAAttention

YOLOv8专栏导航:点击此处跳转 前言 YOLOv8 是由 YOLOv5 的发布者 Ultralytics 发布的最新版本的 YOLO。它可用于对象检测、分割、分类任务以及大型数据集的学习,并且可以在包括 CPU 和 GPU 在内的各种硬件上执行。 YOLOv8 是一种尖端的、最先进的 (SOTA) 模型,它建立在以前成功的 YOLO 版本的基础上,并引入了新的功能和改进,以

YOLOv8改进 | Conv篇 | YOLOv8引入DWR

1. DWR介绍 1.1  摘要:当前的许多工作直接采用多速率深度扩张卷积从一个输入特征图中同时捕获多尺度上下文信息,从而提高实时语义分割的特征提取效率。 然而,这种设计可能会因为结构和超参数的不合理而导致多尺度上下文信息的访问困难。 为了降低多尺度上下文信息的绘制难度,我们提出了一种高效的多尺度特征提取方法,将原始的单步方法分解为区域残差-语义残差两个步骤。 在该方法中,多速率深度扩张卷积

【hadoop Sqoop】Sqoop从mysql导数据到hdfs

1.下载sqoop安装包 wget https://mirrors.tuna.tsinghua.edu.cn/apache/sqoop/1.4.6/sqoop-1.4.6.bin__hadoop-2.0.4-alpha.tar.gz 2.解压安装包 tar -xzvf /sqoop-1.4.6.bin__hadoop-2.0.4-alpha.tar.gz 3.配置hadoop mv s

【Hadoop|HDFS篇】NameNode和SecondaryNameNode

1. NN和2NN的工作机制 思考:NameNode中的元数据是存储在哪里的? 首先,我们做个假设,如果存储在NameNode节点的磁盘中,因为经常需要进行随机访 问,还有响应客户请求,必然是效率过低。因此,元数据需要存放在内存中。但如果只存在 内存中,一旦断电,元数据丢失,整个集群就无法工作了。因此产生在磁盘中备份元数据的 Fslmage。 这样又会带来新的问题,当在内存中的元数据更新时,如