ocr数据不够,怎么造数据

2024-06-20 11:52
文章标签 数据 怎么 ocr 不够

本文主要是介绍ocr数据不够,怎么造数据,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1.确定特定字体类型;

2.收集合适的图片作为背景

3.在背景图上填写特定字体的字符内容

1)字体无法确认时怎么办?

方法一:可以将文本行裁剪出来去网站上确认,网站链接:字体识别-在线扫一扫图片找字体-搜字体!

方法二:将文字输入到文档文件中,更换不同的字体,看是否与字体目标匹配;

字体可以去网上下载,也可以在本机查找;本机的字体所在位置:

个人用户字体文件:~/.local/share/fonts
系统字体文件:/usr/share/fonts
字体配置文件:/etc/fonts/

下面是我处理的代码,仅供参考:

def check_dir1(path):if not os.path.exists(path):os.mkdir(path)else:files = os.listdir(path)for file in files:file_path = os.path.join(path, file)os.remove(file_path)
'''
制作一些文本行数据
'''
from PIL import ImageFont, ImageDraw
import PIL.Image as PImage
import random
import os
import numpy as np
import cv2
from rec.temporary_boundary.line_process import cut_line3_1
from result_process.preprocess import check_dir1if __name__=='__main__':cha_list = ['A','B','C','D','E','F','G','H','I','J','K',\'L','M','N','O','P','Q','R','S','T','U','V','W','X','Y','Z']save_dir = '/home/fuxueping/4tdisk/data/certificate_reader/北京现场测试数据/20240614针对识别问题/SAU_name'check_dir1(save_dir)txt_parh = '/home/fuxueping/4tdisk/data/certificate_reader/北京现场测试数据/20240614针对识别问题/SAU_name.txt'bg_img_dir = '/home/fuxueping/4tdisk/data/certificate_reader/北京现场测试数据/20240614针对识别问题/bg'bg_imgs = os.listdir(bg_img_dir)f_save = open(txt_parh, 'w', encoding='utf-8')check_dir1(save_dir)num = 50while num:all_num = 0bg_img = random.choice(bg_imgs)num1=random.choice([2, 3])chr_str = ''all_num += num1while num1:chr_ = random.choice(cha_list)chr_str += chr_num1 -=1char_med = ''for i in range(3):num2=random.choice([5,6,7,8])chr_str2=''all_num += num2while num2:chr_ = random.choice(cha_list)chr_str2 += chr_num2 -= 1if i == 0:char_med += chr_str2+', 'elif i == 1:char_med += chr_str2 + ' 'elif i == 2:char_med += chr_str2 + ' 'chr_1 = random.choice(cha_list)result_str = chr_str+' '+char_med+chr_1all_num += 1im = PImage.open(os.path.join(bg_img_dir, bg_img))w, h = im.sizefont_size = 24w_len = int(0 + all_num * (font_size-3) + 4)if w_len > w:num -= 1continuename_font = ImageFont.truetype('/home/fuxueping/4tdisk/data/certificate_reader/北京现场测试数据/20240614针对识别问题/fonts/n019003l.pfb', font_size)draw = ImageDraw.Draw(im)y_len = random.randint(0, h-font_size-5)color = tuple([random.randint(0, 20) for _ in range(3)])draw.text((2, y_len), result_str, fill=color, font=name_font)box = (0, y_len, w_len, y_len+font_size+5)rect_img = im.crop(box)image_array = np.array(rect_img)cv2_image = cv2.cvtColor(image_array, cv2.COLOR_RGB2BGR)result, _ = cut_line3_1(cv2_image)if len(result):region_rec = cv2_image[result[1]:result[3], result[0]:min(w, result[2]+2)]  # 裁剪出待识别的区域image_array = cv2.cvtColor(region_rec, cv2.COLOR_BGR2RGB)rect_img = PImage.fromarray(image_array)# image_array = cv2.cvtColor(cv2_image, cv2.COLOR_BGR2RGB)# rect_img = PImage.fromarray(image_array)save_path = os.path.join(save_dir, str(num)+'_'+result_str+'.jpg')line = save_path+'\t'+result_str+'\n'f_save.write(line)rect_img.save(save_path)num -= 1f_save.close()
# 根据设定的阈值和图片直方图,找出波峰,用于分隔字符
def find_waves_row(threshold, histogram):#行数是59# up_point = -1  # 上升点# is_peak = False# if histogram[0] >= threshold:up_point = 0 #起始位置is_peak = Truewave_peaks = []top_cut = []for i, x in enumerate(histogram): #x是对应的像素和,i是行if is_peak and x >= threshold:if i - up_point >=2 :# top_cut.append((up_point, i)) #加这一行,相当于裁减掉多于的空行up_point = i-1else:up_point = iis_peak = Falseelif not is_peak and x < threshold:#随后找到字符消失的位置is_peak = Trueif 1 < i < histogram.shape[0]-1:#行数不是在开头也不在结尾wave_peaks.append((up_point, i+1))else:wave_peaks.append((up_point, i))up_point = i# if is_peak and up_point != -1 and i - up_point > 4:#     wave_peaks.append((up_point, i))if not is_peak and x >= threshold:#虽然数据已经结束,但是没有出现小于阈值的情况wave_peaks.append((up_point, i))return wave_peaksdef cut_line3_1(rgb_img, kernel_size = 3, y_len = 5, row_threshold=255 * 1, col_thresh = 255*1):'''切割出每一行,只保留高度满足条件的一行内容,然后切除掉每一行的前端后尾端的空白'''rgb_img = method_9(rgb_img) #高斯滤波# 使用sauvola进行二值化h, w = rgb_img.shape[:2]sau_bin = sauvola_bin(rgb_img) #sauvola二值化# cv2.imwrite('./../temp/sauvola_bin.jpg', sau_bin)# sau_bin = get_charcter_region(rgb_img)  # 局部区域算阈值二值化# cv2.imwrite('./../temp/sau_bin1.jpg', sau_bin)sau_bin_inv = 255 - sau_bin# cv2.imwrite('./../temp/sau_bin_inv1.jpg', sau_bin_inv)if kernel_size != 0:sau_bin_inv = cv2.medianBlur(sau_bin_inv, kernel_size)# cv2.imwrite('./../temp/sau_bin_inv_dinose1.jpg', sau_bin_inv)col_histogram = np.sum(sau_bin_inv, axis=1)wave_peaks = find_waves_row(col_thresh, col_histogram)result = []#找出高度最大的区域,只保留一行内容max_y = 0result_y = []if not len(wave_peaks):return [], sau_bin_invfor i, wave_peak in enumerate(wave_peaks):y1 = wave_peak[0]y2 = wave_peak[1]if y2 - y1 < y_len: #20之前是这个阈值 ,将高度不满足>=5的字符区域去掉continueif max_y < y2 - y1:max_y = y2 - y1result_y = [y1, y2]if len(result_y): #有时候裁剪的图片可能是没有字符,这种情况多出现在证件类别错误的情况y1 = result_y[0]y2 = result_y[1]else:return [], sau_bin_invline_img = sau_bin_inv[y1:y2, :]# line_img_bgr = rgb_img[wave_peak[0]:wave_peak[1], :]# save_other = os.path.join(save_path, file + '_'+str(i)+'.jpg')# cv2.imwrite(save_other, line_img)row_histogram = np.sum(line_img, axis=0)  # 数组的每一列求和# row_max = np.max(row_histogram)# row_threshold = row_max - 255*1wave_peaks_line = find_waves_col(row_threshold, row_histogram)# cv2.imwrite('./../temp/line_img.jpg', line_img)x1 = 0x2 = wresult_ = []for wave_ in wave_peaks_line:len_x = wave_[1] - wave_[0]if len_x > 5:result_.append(wave_)if len(result_):  # 有时候朝水平投影内容消失了,就用【0,w】代替x1 = result_[0][0]x2 = result_[-1][1]return [x1, y1, x2, y2], sau_bin_inv

这篇关于ocr数据不够,怎么造数据的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1078055

相关文章

SpringBoot多环境配置数据读取方式

《SpringBoot多环境配置数据读取方式》SpringBoot通过环境隔离机制,支持properties/yaml/yml多格式配置,结合@Value、Environment和@Configura... 目录一、多环境配置的核心思路二、3种配置文件格式详解2.1 properties格式(传统格式)1.

解决pandas无法读取csv文件数据的问题

《解决pandas无法读取csv文件数据的问题》本文讲述作者用Pandas读取CSV文件时因参数设置不当导致数据错位,通过调整delimiter和on_bad_lines参数最终解决问题,并强调正确参... 目录一、前言二、问题复现1. 问题2. 通过 on_bad_lines=‘warn’ 跳过异常数据3

C#监听txt文档获取新数据方式

《C#监听txt文档获取新数据方式》文章介绍通过监听txt文件获取最新数据,并实现开机自启动、禁用窗口关闭按钮、阻止Ctrl+C中断及防止程序退出等功能,代码整合于主函数中,供参考学习... 目录前言一、监听txt文档增加数据二、其他功能1. 设置开机自启动2. 禁止控制台窗口关闭按钮3. 阻止Ctrl +

java如何实现高并发场景下三级缓存的数据一致性

《java如何实现高并发场景下三级缓存的数据一致性》这篇文章主要为大家详细介绍了java如何实现高并发场景下三级缓存的数据一致性,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 下面代码是一个使用Java和Redisson实现的三级缓存服务,主要功能包括:1.缓存结构:本地缓存:使

在MySQL中实现冷热数据分离的方法及使用场景底层原理解析

《在MySQL中实现冷热数据分离的方法及使用场景底层原理解析》MySQL冷热数据分离通过分表/分区策略、数据归档和索引优化,将频繁访问的热数据与冷数据分开存储,提升查询效率并降低存储成本,适用于高并发... 目录实现冷热数据分离1. 分表策略2. 使用分区表3. 数据归档与迁移在mysql中实现冷热数据分

C#解析JSON数据全攻略指南

《C#解析JSON数据全攻略指南》这篇文章主要为大家详细介绍了使用C#解析JSON数据全攻略指南,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、为什么jsON是C#开发必修课?二、四步搞定网络JSON数据1. 获取数据 - HttpClient最佳实践2. 动态解析 - 快速

MyBatis-Plus通用中等、大量数据分批查询和处理方法

《MyBatis-Plus通用中等、大量数据分批查询和处理方法》文章介绍MyBatis-Plus分页查询处理,通过函数式接口与Lambda表达式实现通用逻辑,方法抽象但功能强大,建议扩展分批处理及流式... 目录函数式接口获取分页数据接口数据处理接口通用逻辑工具类使用方法简单查询自定义查询方法总结函数式接口

SQL中如何添加数据(常见方法及示例)

《SQL中如何添加数据(常见方法及示例)》SQL全称为StructuredQueryLanguage,是一种用于管理关系数据库的标准编程语言,下面给大家介绍SQL中如何添加数据,感兴趣的朋友一起看看吧... 目录在mysql中,有多种方法可以添加数据。以下是一些常见的方法及其示例。1. 使用INSERT I

Python使用vllm处理多模态数据的预处理技巧

《Python使用vllm处理多模态数据的预处理技巧》本文深入探讨了在Python环境下使用vLLM处理多模态数据的预处理技巧,我们将从基础概念出发,详细讲解文本、图像、音频等多模态数据的预处理方法,... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核

MySQL 删除数据详解(最新整理)

《MySQL删除数据详解(最新整理)》:本文主要介绍MySQL删除数据的相关知识,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录一、前言二、mysql 中的三种删除方式1.DELETE语句✅ 基本语法: 示例:2.TRUNCATE语句✅ 基本语