如何理解快速排序的时间复杂度是O(nlogn)

2024-06-20 10:08

本文主要是介绍如何理解快速排序的时间复杂度是O(nlogn),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

选择排序、冒泡排序等算法的时间复杂度都比较好理解,但不是很清楚快速排序的时间复杂度为什么是O(nlogn)。从《算法图解》中看到的思路,很赞,解决了一直以来的疑惑。

引用自《算法图解》:

快速排序的情况比较棘手,在最糟情况下,其运行时间为O(n2)。。在平均情况下,快速排序的运行时间为O(nlogn)。

1、平均情况与最糟情况

快速排序的性能高度依赖于你选择的基准值。

  • 最糟情况
    假设你总是将第一个元素用作基准值,且要处理的数组是有序的。由于快速排序算法不检查输入数组是否有序,因此它依然尝试对其进行排序。注意,数组并没有被分成两半,相反,其中一个子数组始终为空,这导致调用栈非常长在这里插入图片描述
  • 平均情况
    假设你总是将中间的元素用作基准值,在这种情况下,调用栈如下。 调用栈短得多!因为你每次都将数组分成两半,所以不需要那么多递归调用。你很快就到达 了基线条件,因此调用栈短得多。
    在这里插入图片描述
    第一个示例展示的是最糟情况,而第二个示例展示的是最佳情况。在最糟情况下,栈长为 O(n),而在最佳情况下,栈长为O(log n)。

现在来看看栈的第一层。你将一个元素用作基准值,并将其他的元素划分到两个子数组中。 这涉及数组中的全部8个元素,因此该操作的时间为O(n)。在调用栈的第一层,涉及全部8个元素, 但实际上,在调用栈的每层都涉及O(n)个元素。
在这里插入图片描述
即便以不同的方式划分数组,每次也将涉及O(n)个元素。
在这里插入图片描述
在这个示例中,调用栈的高度为O(log n),而每层需要的时间为O(n)。因此整个算法需要的时间为O(n) * O(log n) = O(n log n)。这就是最佳情况。 在最糟情况下,有O(n)层,因此该算法的运行时间为O(n) * O(n) = O(n2)。

2、归并排序和快速排序的时间复杂度都是 O(nlogn),为什么说快速排序一般优于归并排序?

首先搬运stackOverflow的回答:Why is mergesort better for linked lists?

One of the main sources of efficiency in quicksort is locality of reference, where the computer hardware is optimized so that accessing memory locations that are near one another tends to be faster than accessing memory locations scattered throughout memory. The partitioning step in quicksort typically has excellent locality, since it accesses consecutive array elements near the front and the back. As a result, quicksort tends to perform much better than other sorting algorithms like heapsort even though it often does roughly the same number of comparisons and swaps, since in the case of heapsort the accesses are more scattered.
Additionally, quicksort is typically much faster than other sorting algorithms because it operates in-place, without needing to create any auxiliary arrays to hold temporary values. Compared to something like merge sort, this can be a huge advantage because the time required to allocate and deallocate the auxiliary arrays can be noticeable. Operating in-place also improves quicksort’s locality.
When working with linked lists, neither of these advantages necessarily applies. Because linked list cells are often scattered throughout memory, there is no locality bonus to accessing adjacent linked list cells. Consequently, one of quicksort’s huge performance advantages is eaten up. Similarly, the benefits of working in-place no longer apply, since merge sort’s linked list algorithm doesn’t need any extra auxiliary storage space.
That said, quicksort is still very fast on linked lists. Merge sort just tends to be faster because it more evenly splits the lists in half and does less work per iteration to do a merge than to do the partitioning step.

翻译一下:
快速排序中效率的主要来源之一是引用位置,在引用位置中,计算机硬件经过优化,因此访问彼此相邻的内存位置往往比访问分散在整个内存中的内存位置更快。quicksort中的分区步骤通常具有很好的局部性,因为它访问前面和后面附近的连续数组元素。因此,快速排序往往比其他排序算法(如heapsort)执行得更好,尽管它通常执行大致相同数量的比较和交换,因为在heapsort的情况下,访问更加分散。

此外,quicksort通常比其他排序算法快得多,因为它在原地运行,而不需要创建任何辅助数组来保存临时值。与merge sort相比,这是一个巨大的优势,因为分配和释放辅助数组所需的时间是显而易见的。就地操作也提高了quicksort的位置。

使用链表时,这两个优点都不一定适用。由于链表单元通常分散在整个内存中,因此访问相邻的链表单元没有额外的局部性好处。因此,quicksort的一个巨大的性能优势被消耗殆尽。类似地,就地工作的好处不再适用,因为merge sort的链表算法不需要任何额外的辅助存储空间。

也就是说,快速排序在链接列表中仍然非常快。合并排序往往更快,因为它更均匀地将列表分成两半,并且每次执行合并所做的工作比执行分区步骤所做的工作更少。

这篇关于如何理解快速排序的时间复杂度是O(nlogn)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/1077828

相关文章

利用Python实现时间序列动量策略

《利用Python实现时间序列动量策略》时间序列动量策略作为量化交易领域中最为持久且被深入研究的策略类型之一,其核心理念相对简明:对于显示上升趋势的资产建立多头头寸,对于呈现下降趋势的资产建立空头头寸... 目录引言传统策略面临的风险管理挑战波动率调整机制:实现风险标准化策略实施的技术细节波动率调整的战略价

MybatisX快速生成增删改查的方法示例

《MybatisX快速生成增删改查的方法示例》MybatisX是基于IDEA的MyBatis/MyBatis-Plus开发插件,本文主要介绍了MybatisX快速生成增删改查的方法示例,文中通过示例代... 目录1 安装2 基本功能2.1 XML跳转2.2 代码生成2.2.1 生成.xml中的sql语句头2

8种快速易用的Python Matplotlib数据可视化方法汇总(附源码)

《8种快速易用的PythonMatplotlib数据可视化方法汇总(附源码)》你是否曾经面对一堆复杂的数据,却不知道如何让它们变得直观易懂?别慌,Python的Matplotlib库是你数据可视化的... 目录引言1. 折线图(Line Plot)——趋势分析2. 柱状图(Bar Chart)——对比分析3

一文教你Java如何快速构建项目骨架

《一文教你Java如何快速构建项目骨架》在Java项目开发过程中,构建项目骨架是一项繁琐但又基础重要的工作,Java领域有许多代码生成工具可以帮助我们快速完成这一任务,下面就跟随小编一起来了解下... 目录一、代码生成工具概述常用 Java 代码生成工具简介代码生成工具的优势二、使用 MyBATis Gen

Java List排序实例代码详解

《JavaList排序实例代码详解》:本文主要介绍JavaList排序的相关资料,Java排序方法包括自然排序、自定义排序、Lambda简化及多条件排序,实现灵活且代码简洁,文中通过代码介绍的... 目录一、自然排序二、自定义排序规则三、使用 Lambda 表达式简化 Comparator四、多条件排序五、

JAVA数组中五种常见排序方法整理汇总

《JAVA数组中五种常见排序方法整理汇总》本文给大家分享五种常用的Java数组排序方法整理,每种方法结合示例代码给大家介绍的非常详细,感兴趣的朋友跟随小编一起看看吧... 目录前言:法一:Arrays.sort()法二:冒泡排序法三:选择排序法四:反转排序法五:直接插入排序前言:几种常用的Java数组排序

Python日期和时间完全指南与实战

《Python日期和时间完全指南与实战》在软件开发领域,‌日期时间处理‌是贯穿系统设计全生命周期的重要基础能力,本文将深入解析Python日期时间的‌七大核心模块‌,通过‌企业级代码案例‌揭示最佳实践... 目录一、背景与核心价值二、核心模块详解与实战2.1 datetime模块四剑客2.2 时区处理黄金法

使用animation.css库快速实现CSS3旋转动画效果

《使用animation.css库快速实现CSS3旋转动画效果》随着Web技术的不断发展,动画效果已经成为了网页设计中不可或缺的一部分,本文将深入探讨animation.css的工作原理,如何使用以及... 目录1. css3动画技术简介2. animation.css库介绍2.1 animation.cs

macOS Sequoia 15.5 发布: 改进邮件和屏幕使用时间功能

《macOSSequoia15.5发布:改进邮件和屏幕使用时间功能》经过常规Beta测试后,新的macOSSequoia15.5现已公开发布,但重要的新功能将被保留到WWDC和... MACOS Sequoia 15.5 正式发布!本次更新为 Mac 用户带来了一系列功能强化、错误修复和安全性提升,进一步增

SpringBoot快速搭建TCP服务端和客户端全过程

《SpringBoot快速搭建TCP服务端和客户端全过程》:本文主要介绍SpringBoot快速搭建TCP服务端和客户端全过程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,... 目录TCPServerTCPClient总结由于工作需要,研究了SpringBoot搭建TCP通信的过程