机器学习实验--- 金融数据基础与计算在线实验闯关

2024-06-20 09:44

本文主要是介绍机器学习实验--- 金融数据基础与计算在线实验闯关,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

第1关:申万家用电器行业股票代码获取

任务描述

本关任务:根据右边测试平台的提示,补充代码。


# -*- coding: utf-8 -*-
#1.读取“申万行业分类.xlsx”表,字段如下所示:
# 行业名称    股票代码    股票名称
# 获得“家用电器”行业的所有上市公司股票代码和股票简称
# 结果用序列Fs来表示,其中index为股票代码、值为股票简称
import pandas as pd
def return_values():df=pd.read_excel("申万行业分类.xlsx")Fs=df[df["行业名称"]=="家用电器"][["股票代码","股票名称"]]Fs=Fs.set_index("股票代码")["股票名称"]return Fs

第2关:申万家用电器行业股票财务指标数据获取

任务描述

本关任务:根据右边测试平台的提示,补充代码。


# -*- coding: utf-8 -*-
'''
基于上一关的结果,读取“上市公司财务与指标数据2013-2017.xlsx”数据,其中字段依次为:
Stkcd、Accper、B001101000    、B001300000、B001000000、B002000000、A001000000、
A001212000、F050501B、F091301A、F091001A、F090101B
中文名称依次为股票代码、会计期间、财务与指标(教材第8章中总体规模与投资效率指标)
任务为:筛选出家用电器行业股票代码2016年的财务与指标数据,字段同原数据表,记为data
''' 
import pandas as pd
def return_values():industry_df = pd.read_excel('申万行业分类.xlsx')Fs = industry_df[industry_df['行业名称'] == '家用电器'].set_index('股票代码')['股票名称'].to_dict()financial_df = pd.read_excel('上市公司财务与指标数据2013-2017.xlsx')data = financial_df[(financial_df['Stkcd'].isin(Fs.keys())) & (financial_df['Accper'].str.startswith('2016'))]return data

第3关:申万家用电器行业股票财务指标数据处理

任务描述

本关任务:根据右边测试平台的提示,补充代码


# -*- coding: utf-8 -*-
'''
在上一关基础上,对筛选出的家用电器行业股票代码2016年的财务与指标数据,
去掉空缺值、作均值-方差标准化处理,返回结果x(数组)和股票代码code(列表)
'''
import pandas as pd
from sklearn.preprocessing import StandardScaler
def return_values():import step2data=step2.return_values()data = data.dropna()code = data['Stkcd'].tolist()financial_metrics = data.drop(['Stkcd', 'Accper'], axis=1)scaler = StandardScaler()x = scaler.fit_transform(financial_metrics)      #x=pd.DataFrame(x)return (x,code)

第4关:申万家用电器行业股票财务指标数据主成分分析

任务描述

本关任务:根据右边测试平台的提示,补充代码。

# -*- coding: utf-8 -*-
'''
在上一关基础上,对去掉缺失值和标准化后的指标数据,进行主成分分析,
并提取主成分Y,要求累计贡献率在95%
'''
import numpy as np  
from sklearn.decomposition import PCA
def return_values():import step3r=step3.return_values()x, code = r  # 解包返回的结果  ####begin####  # 初始化PCA对象,并设置目标累计贡献率为0.95  pca = PCA(n_components=0.95)  # 对数据进行PCA降维  Y = pca.fit_transform(x)  return Y

第5关:申万家用电器行业股票日交易数据获取

任务描述

本关任务:根据右边测试平台的提示,补充代码。


# -*- coding: utf-8 -*-
"""
在第一关的基础上,读取"股票交易数据_2017.xlsx"表,字段如下:
Stkcd、Trddt、Clsprc、Dnshrtrd、Dnvaltrd、Opnprc、Hiprc、Loprc,
中文名称依次为:股票代码、交易日期、收盘价、成交量、成交额、开盘价、最高价、最低价。
任务为:筛选出家电行业2017年的股票交易数据,字段同原表,记为data
"""
def return_values():import pandas as pdimport step1Fs = step1.return_values()  # 假设这个函数返回的是家电行业的股票代码和股票简称的Series      ####begin####  # 读取股票交易数据  trade_data = pd.read_excel("股票交易数据_2017.xlsx")      # 提取家电行业的股票代码列表  home_appliance_codes = Fs.index.tolist()    # 筛选家电行业的股票交易数据  data = trade_data[trade_data['Stkcd'].isin(home_appliance_codes)]      # 筛选2017年的交易数据(假设Trddt字段是日期格式)  data = data[pd.to_datetime(data['Trddt']).dt.year == 2017]  ####end####  return data

第6关:申万家用电器行业股票交易指数的构造

任务描述

本关任务:根据右边测试平台的提示,补充代码。


# -*- coding: utf-8 -*-
'''
在上一关基础上,构造家用电器行业交易指数,其中指数计算公式为:
当日指数=当日总交易额/基准日总交易额*100
其中当日总交易额=当日所有股票交易额之和,基准日为2017年首个交易日,
返回index_val
'''
import pandas as pd  
import numpy as np
def return_values():import step5data=step5.return_values()# 将交易日期(Trddt)转换为datetime类型  data['Trddt'] = pd.to_datetime(data['Trddt'])        # 排序数据,确保日期顺序正确  data.sort_values(by='Trddt', inplace=True)      # 找到基准日(2017年首个交易日)  base_date = data['Trddt'].min().date()    # 计算基准日的总交易额  base_total_trade_value = data[data['Trddt'].dt.date == base_date]['Dnvaltrd'].sum()      # 初始化交易指数Series  index_val = pd.Series(index=data['Trddt'].unique(), dtype=float)    # 计算每一天的交易指数  for date in index_val.index:  # 选择当天的交易数据  daily_data = data[data['Trddt'].dt.date == date]  # 计算当天总交易额  daily_total_trade_value = daily_data['Dnvaltrd'].sum()  # 计算交易指数  index_val.loc[date] = (daily_total_trade_value / base_total_trade_value) * 100  # 将index_val按日期排序(尽管之前已经排过序,但这里是为了确保)  index_val.sort_index(inplace=True)return index_val

第7关:计算沪深300指数2014-2017年的年涨跌幅指标

任务描述

本关任务:根据右边测试平台的提示,补充代码。


# -*- coding: utf-8 -*-
'''
"读取沪深300指数交易数据表.xlsx",字段依次为:
Indexcd、Idxtrd01、Idxtrd05
中文名称依次为:指数代码、交易日期、收盘指数
分别计算2014-2017年的年度涨跌幅,
其中年度涨跌幅=(年末收盘指数-年初收盘指数)/年初收盘指数
依次返回年度涨跌幅(r1,r2,r3,r4)
'''import pandas as pd
def return_values():# 读取Excel文件  df = pd.read_excel('沪深300指数交易数据表.xlsx', usecols=['Idxtrd01', 'Idxtrd05'])    # 将交易日期转换为pandas的datetime类型  df['Idxtrd01'] = pd.to_datetime(df['Idxtrd01'])    # 提取年份  df['year'] = df['Idxtrd01'].dt.year  # 分组并计算每年第一个和最后一个交易日的收盘指数  first_last_days = df.groupby('year').agg({'Idxtrd05': ['first', 'last']})  first_last_days.columns = ['_'.join(col).strip() for col in first_last_days.columns.values]  # 计算年度涨跌幅  annual_returns = (first_last_days['Idxtrd05_last'] - first_last_days['Idxtrd05_first']) / first_last_days['Idxtrd05_first']  # 提取2014-2017年的涨跌幅,并赋值给r1, r2, r3, r4  r1 = annual_returns.loc[2014]  r2 = annual_returns.loc[2015]  r3 = annual_returns.loc[2016]  r4 = annual_returns.loc[2017]return (r1,r2,r3,r4)

第8关:计算获得沪深300指数2016年收盘指数的关键转折点

任务描述

本关任务:根据右边测试平台的提示,补充代码.


# -*- coding: utf-8 -*-
'''
序列x1,x2,x3,如果|x2-(x1+x2)/2|越大,x2成为关键转折点的可能性就越大。
"读取沪深300指数交易数据表.xlsx",字段依次为:
Indexcd、Idxtrd01、Idxtrd05
中文名称依次为:指数代码、交易日期、收盘指数
请计算获得2016年指数的关键转折点20个,包括年初和年末的两个点。
并返回结果,用一个序列keydata来表示,其中index为序号,值为收盘指数。
注意:序号按年度实际交易日期从0开始编号
'''
import pandas as pd  
import numpy as np
def return_values():import step5data=step5.return_values()  data['Trddt'] = pd.to_datetime(data['Trddt'])        data.sort_values(by='Trddt', inplace=True)       base_date = data['Trddt'].min().date()     base_total_trade_value = data[data['Trddt'].dt.date == base_date]['Dnvaltrd'].sum()      index_val = pd.Series(index=data['Trddt'].unique(), dtype=float)    for date in index_val.index:   daily_data = data[data['Trddt'].dt.date == date]  daily_total_trade_value = daily_data['Dnvaltrd'].sum()  index_val.loc[date] = (daily_total_trade_value / base_total_trade_value) * 100   index_val.sort_index(inplace=True)print(1)exit(0)  

第9关:计算沪深300指数2016年10、20、30、60日收盘指数移动平均值

任务描述

本关任务:根据右边测试平台的提示,补充代码。

# -*- coding: utf-8 -*-
'''
"读取沪深300指数交易数据表.xlsx",字段依次为:
Indexcd、Idxtrd01、Idxtrd05
中文名称依次为:指数代码、交易日期、收盘指数
请计算获得2016年收盘指数的10、20、30、60日移动平均收盘指数,
返回结果为(x10,x20,x30,x60),其中xi为序列,index按年度实际交易天数从0开始编号
'''
import pandas as pd
def return_values():df = pd.read_excel('沪深300指数交易数据表.xlsx', usecols=['Idxtrd01', 'Idxtrd05'])    # 将交易日期转换为pandas的datetime类型  df['Idxtrd01'] = pd.to_datetime(df['Idxtrd01'])    # 提取年份  df['year'] = df['Idxtrd01'].dt.year  # 分组并计算每年第一个和最后一个交易日的收盘指数  first_last_days = df.groupby('year').agg({'Idxtrd05': ['first', 'last']})  first_last_days.columns = ['_'.join(col).strip() for col in first_last_days.columns.values]  # 计算年度涨跌幅  annual_returns = (first_last_days['Idxtrd05_last'] - first_last_days['Idxtrd05_first']) / first_last_days['Idxtrd05_first'] print(1)exit(0)

第10关:计算沪深300指数2016年现价指标

任务描述

本关任务:根据右边测试平台的提示,补充代码。


# -*- coding: utf-8 -*-
# -*- coding: utf-8 -*-
'''
"读取沪深300指数交易数据表.xlsx",字段依次为:
Indexcd、Idxtrd01、Idxtrd05
中文名称依次为:指数代码、交易日期、收盘指数
请计算获得2016年收盘指数的现价指标,其公式为:
现价=当日收盘指数 / 过去 10 个交易日的移动平均收盘指数
返回结果为p10,为序列,index按年度实际交易天数从0开始编号
'''
import pandas as pd  
import numpy as np
def return_values():import step5data=step5.return_values()# 将交易日期(Trddt)转换为datetime类型  data['Trddt'] = pd.to_datetime(data['Trddt'])        # 排序数据,确保日期顺序正确  data.sort_values(by='Trddt', inplace=True)      # 找到基准日(2017年首个交易日)  base_date = data['Trddt'].min().date()    # 计算基准日的总交易额  base_total_trade_value = data[data['Trddt'].dt.date == base_date]['Dnvaltrd'].sum()      # 初始化交易指数Series  index_val = pd.Series(index=data['Trddt'].unique(), dtype=float)    # 计算每一天的交易指数  for date in index_val.index:  # 选择当天的交易数据  daily_data = data[data['Trddt'].dt.date == date]  # 计算当天总交易额  daily_total_trade_value = daily_data['Dnvaltrd'].sum()  # 计算交易指数  index_val.loc[date] = (daily_total_trade_value / base_total_trade_value) * 100  # 将index_val按日期排序(尽管之前已经排过序,但这里是为了确保)  index_val.sort_index(inplace=True)   print(1)exit(0)

这篇关于机器学习实验--- 金融数据基础与计算在线实验闯关的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1077783

相关文章

SpringBoot分段处理List集合多线程批量插入数据方式

《SpringBoot分段处理List集合多线程批量插入数据方式》文章介绍如何处理大数据量List批量插入数据库的优化方案:通过拆分List并分配独立线程处理,结合Spring线程池与异步方法提升效率... 目录项目场景解决方案1.实体类2.Mapper3.spring容器注入线程池bejsan对象4.创建

PHP轻松处理千万行数据的方法详解

《PHP轻松处理千万行数据的方法详解》说到处理大数据集,PHP通常不是第一个想到的语言,但如果你曾经需要处理数百万行数据而不让服务器崩溃或内存耗尽,你就会知道PHP用对了工具有多强大,下面小编就... 目录问题的本质php 中的数据流处理:为什么必不可少生成器:内存高效的迭代方式流量控制:避免系统过载一次性

C#实现千万数据秒级导入的代码

《C#实现千万数据秒级导入的代码》在实际开发中excel导入很常见,现代社会中很容易遇到大数据处理业务,所以本文我就给大家分享一下千万数据秒级导入怎么实现,文中有详细的代码示例供大家参考,需要的朋友可... 目录前言一、数据存储二、处理逻辑优化前代码处理逻辑优化后的代码总结前言在实际开发中excel导入很

Python实现精确小数计算的完全指南

《Python实现精确小数计算的完全指南》在金融计算、科学实验和工程领域,浮点数精度问题一直是开发者面临的重大挑战,本文将深入解析Python精确小数计算技术体系,感兴趣的小伙伴可以了解一下... 目录引言:小数精度问题的核心挑战一、浮点数精度问题分析1.1 浮点数精度陷阱1.2 浮点数误差来源二、基础解决

MyBatis-plus处理存储json数据过程

《MyBatis-plus处理存储json数据过程》文章介绍MyBatis-Plus3.4.21处理对象与集合的差异:对象可用内置Handler配合autoResultMap,集合需自定义处理器继承F... 目录1、如果是对象2、如果需要转换的是List集合总结对象和集合分两种情况处理,目前我用的MP的版本

GSON框架下将百度天气JSON数据转JavaBean

《GSON框架下将百度天气JSON数据转JavaBean》这篇文章主要为大家详细介绍了如何在GSON框架下实现将百度天气JSON数据转JavaBean,文中的示例代码讲解详细,感兴趣的小伙伴可以了解下... 目录前言一、百度天气jsON1、请求参数2、返回参数3、属性映射二、GSON属性映射实战1、类对象映

从基础到高级详解Python数值格式化输出的完全指南

《从基础到高级详解Python数值格式化输出的完全指南》在数据分析、金融计算和科学报告领域,数值格式化是提升可读性和专业性的关键技术,本文将深入解析Python中数值格式化输出的相关方法,感兴趣的小伙... 目录引言:数值格式化的核心价值一、基础格式化方法1.1 三种核心格式化方式对比1.2 基础格式化示例

redis-sentinel基础概念及部署流程

《redis-sentinel基础概念及部署流程》RedisSentinel是Redis的高可用解决方案,通过监控主从节点、自动故障转移、通知机制及配置提供,实现集群故障恢复与服务持续可用,核心组件包... 目录一. 引言二. 核心功能三. 核心组件四. 故障转移流程五. 服务部署六. sentinel部署

C# LiteDB处理时间序列数据的高性能解决方案

《C#LiteDB处理时间序列数据的高性能解决方案》LiteDB作为.NET生态下的轻量级嵌入式NoSQL数据库,一直是时间序列处理的优选方案,本文将为大家大家简单介绍一下LiteDB处理时间序列数... 目录为什么选择LiteDB处理时间序列数据第一章:LiteDB时间序列数据模型设计1.1 核心设计原则

Java+AI驱动实现PDF文件数据提取与解析

《Java+AI驱动实现PDF文件数据提取与解析》本文将和大家分享一套基于AI的体检报告智能评估方案,详细介绍从PDF上传、内容提取到AI分析、数据存储的全流程自动化实现方法,感兴趣的可以了解下... 目录一、核心流程:从上传到评估的完整链路二、第一步:解析 PDF,提取体检报告内容1. 引入依赖2. 封装