通信系统的最佳线性均衡器(1)---维纳滤波线性均衡

2024-06-20 04:44

本文主要是介绍通信系统的最佳线性均衡器(1)---维纳滤波线性均衡,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

        本篇文章是博主在通信等领域学习时,用于个人学习、研究或者欣赏使用,并基于博主对通信等领域的一些理解而记录的学习摘录和笔记,若有不当和侵权之处,指出后将会立即改正,还望谅解。文章分类在通信领域笔记

          通信领域笔记(4)---《通信系统的最佳线性均衡器(1)---维纳滤波线性均衡》

通信系统的最佳线性均衡器(1)---维纳滤波线性均衡

目录

1. 背景分析

2 理论分析推导      

3 MATLAB 仿真 FIR 最佳线性滤波器

4 总结分析​​​​​​​


1. 背景分析

        在通信系统中,发射机发送的信号通过信道传输到接收机,传输信道有不同 的媒体,主要分成有线和无线两类。以无线为例,发射信号通过无线信道传播, 经过多径到达接收机而被接收,这些多径是由于信道中的信号经反射、折射和衍射形成的。多径传播产生的接收信号是由多个延迟衰落的发射信号叠加而成的。因此接收机接收到的信号中存在着串扰和畸变,直接进行检测会产生较大的误码。一种改善信号检测性能的装置是信道均衡器,它的目标是补偿信道造成的串扰和畸变。通信系统的最佳线性均衡器通常是指使用线性滤波器来抵消信道引起的失真和干扰,以尽可能恢复发送端发送的信号。最佳的线性均衡器设计需要考虑到信道的特性以及发送信号的统计特性。一种常见的实现方式是使用维纳-霍夫等式,它可以得到一个最小均方误差的解。另外,常用的线性均衡器包括莱斯滤波器、线性均衡器和决策反馈均衡器等。

        维纳滤波器是一种最佳线性无失真滤波器,它的设计考虑了信道的特性和发送信号的统计特性,以最小化输出信号与原始信号之间的均方误差。因此,维纳滤波器可以用作通信系统中的线性均衡器,帮助抵消信道引起的失真和干扰。考虑一个简化的线性自适应均衡器的原理性实验框图如图 1 所示。随机数据产生器产生双极性的随机序列𝑠(𝑛),它随机地取±1。随机信号通过一个信道传输,信道性质可由一个三系数 FIR 滤波器近似,滤波器系数分别是 0.30.90.3。在信道输出端加入方差为𝜎 2的高斯白噪声。设计一个有 11 个权系数的 FIR 结构的维纳滤波器作为本问题的均衡器,为使均衡器的权系数接近对称,令均衡器的期望响应为𝑠(𝑛 − 7)。在几个选定的信噪比下,进行实验。


2 理论分析推导      

        在维纳滤波器设计中,最常用的是 FIR 维纳滤波器。这是因为 FIR 滤波器具有稳定性和实现上的优势,其设计更为直观和容易控制。此外,FIR 滤波器可以 较为灵活地满足各种滤波要求,并且不会引入稳定性和因果性方面的问题。相比 之下,因果 IIR 和非因果 IIR 维纳滤波器在实际设计中使用较少,因为其设计和实现更为复杂,对系统稳定性和实时性要求较高。此处以 FIR 维纳滤波器为例进 行分析。 已知𝒚(𝒏)是期望的输出信号,𝒙(𝒏)是输入信号,𝒆(𝒏)是误差信号。𝒚(𝒏)𝒙(𝒏) 是均值为 0 的平稳的离散时间信号,二阶矩已知。

2.1 维纳-霍夫方程(Wiener-Hopf 方程)


3 MATLAB 仿真 FIR 最佳线性滤波器

        首先生成双极性随机序列𝑠(𝑛),通过模拟信道特性的三系数 FIR 滤波器,并添加信噪比为 20dB 的高斯白噪声,得到维纳滤波器的输入信号序列𝑥(𝑛),期望 信号为原始双极性随机序列𝑠(𝑛)

clc
clear all
close all
% 生成双极性随机序列s(n)
N = 500;
s = sign(randn(1, N));% 模拟信号通过信道传输
h = [0.3, 0.9, 0.3]; % FIR滤波器系数
x = filter(h, 1, s); % 信号通过FIR滤波器
x = x(2:end);
SNR_dB = 10; % 信噪比为10dB
r = awgn(x,SNR_dB,'measured');%信号加入高斯白噪声信号
figure
plot(s(1:200));
hold on
plot(r(1:200));
legend('双极性随机序列s(n)','加噪后信号x(n)');

        求输入序列𝑥(𝑛) 的自相关函数R 𝑥𝑥 (𝑛) 以及期望序列与输入序列的互相关函数 R𝑦𝑥(𝑛) 根据维纳 - 霍夫方程,可以求得维纳滤波器系数。此处选择设计 11 阶( 12 个参数)的维纳滤波器。
%%FIR最佳线性滤波器
Rx = xcorr(r,10);%输入自相关
Rxyd = xcorr(r,s,10);%输入与期望输出的互相关
R0=[Rx(10) Rx(11) Rx(12) Rx(13) Rx(14) Rx(15) Rx(16) Rx(17) Rx(18) Rx(19) Rx(20) Rx(21);Rx(11) Rx(10) Rx(11) Rx(12) Rx(13) Rx(14) Rx(15) Rx(16) Rx(17) Rx(18) Rx(19) Rx(20);Rx(12) Rx(11) Rx(10) Rx(11) Rx(12) Rx(13) Rx(14) Rx(15) Rx(16) Rx(17) Rx(18) Rx(19);Rx(13) Rx(12) Rx(11) Rx(10) Rx(11) Rx(12) Rx(13) Rx(14) Rx(15) Rx(16) Rx(17) Rx(18);Rx(14) Rx(13) Rx(12) Rx(11) Rx(10) Rx(11) Rx(12) Rx(13) Rx(14) Rx(15) Rx(16) Rx(17);Rx(15) Rx(14) Rx(13) Rx(12) Rx(11) Rx(10) Rx(11) Rx(12) Rx(13) Rx(14) Rx(15) Rx(16);Rx(16) Rx(15) Rx(14) Rx(13) Rx(12) Rx(11) Rx(10) Rx(11) Rx(12) Rx(13) Rx(14) Rx(15);Rx(17) Rx(16) Rx(15) Rx(14) Rx(13) Rx(12) Rx(11) Rx(10) Rx(11) Rx(12) Rx(13) Rx(14);Rx(18) Rx(17) Rx(16) Rx(15) Rx(14) Rx(13) Rx(12) Rx(11) Rx(10) Rx(11) Rx(12) Rx(13);Rx(19) Rx(18) Rx(17) Rx(16) Rx(15) Rx(14) Rx(13) Rx(12) Rx(11) Rx(10) Rx(11) Rx(12);Rx(20) Rx(19) Rx(18) Rx(17) Rx(16) Rx(15) Rx(14) Rx(13) Rx(12) Rx(11) Rx(10) Rx(11);Rx(21) Rx(20) Rx(19) Rx(18) Rx(17) Rx(16) Rx(15) Rx(14) Rx(13) Rx(12) Rx(11) Rx(10);];
R1=[Rxyd(10) Rxyd(11) Rxyd(12) Rxyd(13) Rxyd(14) Rxyd(15) Rxyd(16) Rxyd(17) Rxyd(18) Rxyd(19) Rxyd(20) Rxyd(21)]';
h = (R0\R1);%滤波器系数
out_signal = filter(h, 1, r);%输出信号

        由上图可知,该维纳滤波器基本恢复出的信号与原始双极性随机序列𝑠(𝑛) 仍 有一定的差距,误差值未收敛。但是从趋势上来看,已基本符合双极性随机序列𝑠(𝑛) 的跳变趋势。
        考虑到加噪后的信号仍存在一定的跳变趋势,故降低信噪比至 10dB 再次进行实验。

        由图知,减小信噪比后,加噪后信号波动变大,滤波器误差随着信噪比的减小而增大了,效果并不出众。由于 FIR 最佳线性滤波器计算得到的滤波器参数只是使用了 12 个输出序列进行运算,并没有进行迭代过程,故计算出的滤波器参数并不是最优的,因此考虑使用自适应滤波器的方法来滤除高斯噪声。(此处只是提前使用自适应算法,改进滤波效果,具体自适应算法的实验在 3.2

        在 20dB 的信噪比下,利用 LMS 自适应滤波器进行实验,

        由上图可知,LMS 自适应算法的误差曲线处于收敛趋势,且进行到大约 250 次迭代时,误差曲线基本收敛。与 FIR 最佳线性滤波器相比,均衡后的信号序列更加贴近期望信号,效果更好。


4 总结分析

        维纳滤波器与常规滤波器相比,在抑制信道失真和噪声方面表现出良好的效果。但在动态信道或噪声较大的通信系统,维纳滤波器的效果会减弱。在算法设计上,需要注意信号时刻对齐的问题。


     文章若有不当和不正确之处,还望理解与指出。由于部分文字、图片等来源于互联网,无法核实真实出处,如涉及相关争议,请联系博主删除。如有错误、疑问和侵权,欢迎评论留言联系作者,或者私信联系作者。

这篇关于通信系统的最佳线性均衡器(1)---维纳滤波线性均衡的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1077135

相关文章

MySQL MCP 服务器安装配置最佳实践

《MySQLMCP服务器安装配置最佳实践》本文介绍MySQLMCP服务器的安装配置方法,本文结合实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下... 目录mysql MCP 服务器安装配置指南简介功能特点安装方法数据库配置使用MCP Inspector进行调试开发指

SQLite3命令行工具最佳实践指南

《SQLite3命令行工具最佳实践指南》SQLite3是轻量级嵌入式数据库,无需服务器支持,具备ACID事务与跨平台特性,适用于小型项目和学习,sqlite3.exe作为命令行工具,支持SQL执行、数... 目录1. SQLite3简介和特点2. sqlite3.exe使用概述2.1 sqlite3.exe

mtu设置多少网速最快? 路由器MTU设置最佳网速的技巧

《mtu设置多少网速最快?路由器MTU设置最佳网速的技巧》mtu设置多少网速最快?想要通过设置路由器mtu获得最佳网速,该怎么设置呢?下面我们就来看看路由器MTU设置最佳网速的技巧... 答:1500 MTU值指的是在网络传输中数据包的最大值,合理的设置MTU 值可以让网络更快!mtu设置可以优化不同的网

基于Python实现一个简单的题库与在线考试系统

《基于Python实现一个简单的题库与在线考试系统》在当今信息化教育时代,在线学习与考试系统已成为教育技术领域的重要组成部分,本文就来介绍一下如何使用Python和PyQt5框架开发一个名为白泽题库系... 目录概述功能特点界面展示系统架构设计类结构图Excel题库填写格式模板题库题目填写格式表核心数据结构

Linux系统中的firewall-offline-cmd详解(收藏版)

《Linux系统中的firewall-offline-cmd详解(收藏版)》firewall-offline-cmd是firewalld的一个命令行工具,专门设计用于在没有运行firewalld服务的... 目录主要用途基本语法选项1. 状态管理2. 区域管理3. 服务管理4. 端口管理5. ICMP 阻断

java中Optional的核心用法和最佳实践

《java中Optional的核心用法和最佳实践》Java8中Optional用于处理可能为null的值,减少空指针异常,:本文主要介绍java中Optional核心用法和最佳实践的相关资料,文中... 目录前言1. 创建 Optional 对象1.1 常规创建方式2. 访问 Optional 中的值2.1

Nginx Location映射规则总结归纳与最佳实践

《NginxLocation映射规则总结归纳与最佳实践》Nginx的location指令是配置请求路由的核心机制,其匹配规则直接影响请求的处理流程,下面给大家介绍NginxLocation映射规则... 目录一、Location匹配规则与优先级1. 匹配模式2. 优先级顺序3. 匹配示例二、Proxy_pa

Windows 系统下 Nginx 的配置步骤详解

《Windows系统下Nginx的配置步骤详解》Nginx是一款功能强大的软件,在互联网领域有广泛应用,简单来说,它就像一个聪明的交通指挥员,能让网站运行得更高效、更稳定,:本文主要介绍W... 目录一、为什么要用 Nginx二、Windows 系统下 Nginx 的配置步骤1. 下载 Nginx2. 解压

RabbitMQ工作模式中的RPC通信模式详解

《RabbitMQ工作模式中的RPC通信模式详解》在RabbitMQ中,RPC模式通过消息队列实现远程调用功能,这篇文章给大家介绍RabbitMQ工作模式之RPC通信模式,感兴趣的朋友一起看看吧... 目录RPC通信模式概述工作流程代码案例引入依赖常量类编写客户端代码编写服务端代码RPC通信模式概述在R

如何确定哪些软件是Mac系统自带的? Mac系统内置应用查看技巧

《如何确定哪些软件是Mac系统自带的?Mac系统内置应用查看技巧》如何确定哪些软件是Mac系统自带的?mac系统中有很多自带的应用,想要看看哪些是系统自带,该怎么查看呢?下面我们就来看看Mac系统内... 在MAC电脑上,可以使用以下方法来确定哪些软件是系统自带的:1.应用程序文件夹打开应用程序文件夹