代码随想录算法训练营第四十三天 | 完全背包理论基础、518.零钱兑换II、377. 组合总和 Ⅳ、70. 爬楼梯 (进阶)

本文主要是介绍代码随想录算法训练营第四十三天 | 完全背包理论基础、518.零钱兑换II、377. 组合总和 Ⅳ、70. 爬楼梯 (进阶),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

完全背包理论基础

题目链接:https://kamacoder.com/problempage.php?pid=1052
文档讲解:https://programmercarl.com/%E8%83%8C%E5%8C%85%E9%97%AE%E9%A2%98%E7%90%86%E8%AE%BA%E5%9F…
视频讲解:https://www.bilibili.com/video/BV1uK411o7c9/

思路

完全背包中,每个物品可以使用无限次。遍历顺序为顺序遍历物品和顺序遍历背包,并且两个for循环可以交换顺序。

for (int i = 0; i < weight.length; i++) {for (int j = weight[i]; j <= bagWeight; j++){dp[j] = Math.max(dp[j], dp[j - weight[i]] + value[i]);}
}

代码

import java.util.*;public class Main{public static void main(String[] args) {Scanner in = new Scanner(System.in);int n = in.nextInt();int bagWeight = in.nextInt();int[] weight = new int[n];int[] value = new int[n];for (int i = 0; i < n; i++) {weight[i] = in.nextInt();value[i] = in.nextInt();}int[] dp = new int[bagWeight + 1];for (int i = 0; i < n; i++) {for (int j = weight[i]; j <= bagWeight; j++) {dp[j] = Math.max(dp[j], dp[j - weight[i]] + value[i]);}}System.out.println(dp[bagWeight]);}
}

518.零钱兑换II

题目链接:https://leetcode.cn/problems/coin-change-ii/
文档讲解:https://programmercarl.com/0518.%E9%9B%B6%E9%92%B1%E5%85%91%E6%8D…
视频讲解:https://www.bilibili.com/video/BV1KM411k75j/

思路

  • 确定dp数组以及下标的含义:凑成j块钱有dp[j]种方法。
  • 确定递推公式:计算方法数要用累加,公式为dp[j] += dp[j - coins[i]];
  • dp数组如何初始化:dp[0] = 1;,否则累加出来都是0。
  • 确定遍历顺序:完全背包问题中,物品和背包都是正序遍历。本题要求的是组合数,需要先遍历物品,再遍历背包;如果是求排列数,就需要先遍历背包,再遍历物品。
  • 打印dp数组,用于debug

代码

class Solution {public int change(int amount, int[] coins) {int[] dp = new int[amount + 1];dp[0] = 1;for (int i = 0; i < coins.length; i++) {for (int j = coins[i]; j <= amount; j++) {dp[j] += dp[j - coins[i]];}}return dp[amount];}
}

分析:时间复杂度:O(mn),空间复杂度:O(m)。其中 m 是 amount,n 是 coins 的长度。

377. 组合总和 Ⅳ

题目链接:https://leetcode.cn/problems/combination-sum-iv/
文档讲解:https://programmercarl.com/0377.%E7%BB%84%E5%90%88%E6%80%BB%E5%92%8C%E2%85%A3.html
视频讲解:https://www.bilibili.com/video/BV1V14y1n7B6/

思路

  • 确定dp数组以及下标的含义:能够凑成目标整数j的组合数为dp[j]
  • 确定递推公式:计算方法数要用累加,公式为dp[j] += dp[j - nums[i]];
  • dp数组如何初始化:dp[0] = 1;,否则累加出来都是0。
  • 确定遍历顺序:完全背包问题中,物品和背包都是正序遍历。本题要求的是排列数,需要先遍历背包,再遍历物品;如果是求组合数,就需要先遍历物品,再遍历背包。
  • 打印dp数组,用于debug

代码

class Solution {public int combinationSum4(int[] nums, int target) {int[] dp = new int[target + 1];dp[0] = 1;for (int j = 0; j <= target; j++) {for (int i = 0; i < nums.length; i++) {if (j >= nums[i]) dp[j] += dp[j - nums[i]];}}return dp[target];}
}

分析:时间复杂度:O(mn),空间复杂度:O(m)。其中m是target,n是nums的长度。

70. 爬楼梯 (进阶)

题目链接:https://kamacoder.com/problempage.php?pid=1067
文档讲解:https://programmercarl.com/0070.%E7%88%AC%E6%A5%BC%E6%A2%AF%E5%AE%8C%E5%85%A8%E8%83%8C%E5…

思路

  • 确定dp数组以及下标的含义:爬j阶台阶的方法有dp[j]种。
  • 确定递推公式:计算方法数要用累加,公式为dp[j] += dp[j - i];
  • dp数组如何初始化:dp[0] = 1;,否则累加出来都是0。
  • 确定遍历顺序:完全背包问题中,物品和背包都是正序遍历。本题要求的是排列数,需要先遍历背包,再遍历物品;如果是求组合数,就需要先遍历物品,再遍历背包。
  • 打印dp数组,用于debug

代码

import java.util.*;public class Main{public static void main(String[] args) {Scanner in = new Scanner(System.in);int n = in.nextInt();int m = in.nextInt();int[] dp = new int[n + 1];dp[0] = 1;for (int j = 0; j <= n; j++) {for (int i = 1; i <= m; i++) {if (j >= i) dp[j] += dp[j - i];   }}System.out.println(dp[n]);}
}

分析:时间复杂度:O(mn),空间复杂度:O(n)。

这篇关于代码随想录算法训练营第四十三天 | 完全背包理论基础、518.零钱兑换II、377. 组合总和 Ⅳ、70. 爬楼梯 (进阶)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1076900

相关文章

从基础到高级详解Go语言中错误处理的实践指南

《从基础到高级详解Go语言中错误处理的实践指南》Go语言采用了一种独特而明确的错误处理哲学,与其他主流编程语言形成鲜明对比,本文将为大家详细介绍Go语言中错误处理详细方法,希望对大家有所帮助... 目录1 Go 错误处理哲学与核心机制1.1 错误接口设计1.2 错误与异常的区别2 错误创建与检查2.1 基础

深入理解Mysql OnlineDDL的算法

《深入理解MysqlOnlineDDL的算法》本文主要介绍了讲解MysqlOnlineDDL的算法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小... 目录一、Online DDL 是什么?二、Online DDL 的三种主要算法2.1COPY(复制法)

Java集合之Iterator迭代器实现代码解析

《Java集合之Iterator迭代器实现代码解析》迭代器Iterator是Java集合框架中的一个核心接口,位于java.util包下,它定义了一种标准的元素访问机制,为各种集合类型提供了一种统一的... 目录一、什么是Iterator二、Iterator的核心方法三、基本使用示例四、Iterator的工

Java 线程池+分布式实现代码

《Java线程池+分布式实现代码》在Java开发中,池通过预先创建并管理一定数量的资源,避免频繁创建和销毁资源带来的性能开销,从而提高系统效率,:本文主要介绍Java线程池+分布式实现代码,需要... 目录1. 线程池1.1 自定义线程池实现1.1.1 线程池核心1.1.2 代码示例1.2 总结流程2. J

全网最全Tomcat完全卸载重装教程小结

《全网最全Tomcat完全卸载重装教程小结》windows系统卸载Tomcat重新通过ZIP方式安装Tomcat,优点是灵活可控,适合开发者自定义配置,手动配置环境变量后,可通过命令行快速启动和管理... 目录一、完全卸载Tomcat1. 停止Tomcat服务2. 通过控制面板卸载3. 手动删除残留文件4.

Spring的基础事务注解@Transactional作用解读

《Spring的基础事务注解@Transactional作用解读》文章介绍了Spring框架中的事务管理,核心注解@Transactional用于声明事务,支持传播机制、隔离级别等配置,结合@Tran... 目录一、事务管理基础1.1 Spring事务的核心注解1.2 注解属性详解1.3 实现原理二、事务事

JS纯前端实现浏览器语音播报、朗读功能的完整代码

《JS纯前端实现浏览器语音播报、朗读功能的完整代码》在现代互联网的发展中,语音技术正逐渐成为改变用户体验的重要一环,下面:本文主要介绍JS纯前端实现浏览器语音播报、朗读功能的相关资料,文中通过代码... 目录一、朗读单条文本:① 语音自选参数,按钮控制语音:② 效果图:二、朗读多条文本:① 语音有默认值:②

Vue实现路由守卫的示例代码

《Vue实现路由守卫的示例代码》Vue路由守卫是控制页面导航的钩子函数,主要用于鉴权、数据预加载等场景,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着... 目录一、概念二、类型三、实战一、概念路由守卫(Navigation Guards)本质上就是 在路

uni-app小程序项目中实现前端图片压缩实现方式(附详细代码)

《uni-app小程序项目中实现前端图片压缩实现方式(附详细代码)》在uni-app开发中,文件上传和图片处理是很常见的需求,但也经常会遇到各种问题,下面:本文主要介绍uni-app小程序项目中实... 目录方式一:使用<canvas>实现图片压缩(推荐,兼容性好)示例代码(小程序平台):方式二:使用uni

Java JUC并发集合详解之线程安全容器完全攻略

《JavaJUC并发集合详解之线程安全容器完全攻略》Java通过java.util.concurrent(JUC)包提供了一整套线程安全的并发容器,它们不仅是简单的同步包装,更是基于精妙并发算法构建... 目录一、为什么需要JUC并发集合?二、核心并发集合分类与详解三、选型指南:如何选择合适的并发容器?在多