day14-226.翻转二叉树+101. 对称二叉树+104.二叉树的最大深度

2024-06-20 00:28

本文主要是介绍day14-226.翻转二叉树+101. 对称二叉树+104.二叉树的最大深度,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、226.翻转二叉树

题目链接:https://leetcode.cn/problems/invert-binary-tree/
文章讲解:https://programmercarl.com/0226.%E7%BF%BB%E8%BD%AC%E4%BA%8C%E5%8F%89%E6%A0%91.html#%E7%AE%97%E6%B3%95%E5%85%AC%E5%BC%80%E8%AF%BE
视频讲解:https://www.bilibili.com/video/BV1fA4y1o715

1.1 初见思路

  1. 看到树的题目,就先考虑使用递归,递归写起来方便
  2. 递归的三要素

1.2 具体实现

class Solution {public TreeNode invertTree(TreeNode root) {if(root==null){return root;}//前序,中左右,中的操作是把中的左右节点互换reverse(root);invertTree(root.left);invertTree(root.right);return root;}void reverse(TreeNode node){TreeNode temp = new TreeNode();temp = node.left;node.left=node.right;node.right=temp;}
}

1.3 重难点

二、 101. 对称二叉树

题目链接:https://leetcode.cn/problems/symmetric-tree/submissions/540690035/
文章讲解:https://programmercarl.com/0101.%E5%AF%B9%E7%A7%B0%E4%BA%8C%E5%8F%89%E6%A0%91.html#%E7%AE%97%E6%B3%95%E5%85%AC%E5%BC%80%E8%AF%BE
视频讲解:https://www.bilibili.com/video/BV1ue4y1Y7Mf

2.1 初见思路

  1. 判断节点的左子树跟右子树是否相同,

2.2 具体实现

class Solution {public boolean isSymmetric(TreeNode root) {//使用后序遍历,判断左节点和右节点是否相同,将结果返回给中节点return compare(root.left, root.right);}private boolean compare(TreeNode left, TreeNode right) {if (left == null && right != null) {return false;}if (left != null && right == null) {return false;}if (left == null && right == null) {return true;}if (left.val != right.val) {return false;}// 比较外侧boolean compareOutside = compare(left.left, right.right);// 比较内侧boolean compareInside = compare(left.right, right.left);return compareOutside && compareInside;}
}

2.3 重难点

  • 思路转换成代码实现有难度,要考虑到左节点和右节点是否相等的各种场景

三、 104.二叉树的最大深度

题目链接:https://leetcode.cn/problems/maximum-depth-of-binary-tree/description/
文章讲解:https://programmercarl.com/0104.%E4%BA%8C%E5%8F%89%E6%A0%91%E7%9A%84%E6%9C%80%E5%A4%A7%E6%B7%B1%E5%BA%A6.html
视频讲解:https://www.bilibili.com/video/BV1Gd4y1V75u

3.1 初见思路

  1. 获取左子树的深度和右子树的深度,取较大者+1,为中节点的深度

3.2 具体实现

class Solution {public int maxDepth = 0;public int maxDepth(TreeNode root) {if(root==null){return 0;}//采用后序遍历,左右中int leftD = maxDepth(root.left);int rightD = maxDepth(root.right);return Math.max(leftD,rightD)+1;}
}

3.3 重难点

四、 111.二叉树的最小深度

题目链接:https://leetcode.cn/problems/remove-element/
文章讲解:https://programmercarl.com/0111.%E4%BA%8C%E5%8F%89%E6%A0%91%E7%9A%84%E6%9C%80%E5%B0%8F%E6%B7%B1%E5%BA%A6.html
视频讲解:https://www.bilibili.com/video/BV1QD4y1B7e2

4.1 初见思路

  1. 使用前序遍历:左右中

4.2 具体实现

class Solution {public int minDepth(TreeNode root) {if (root == null) {return 0;}int leftDepth = minDepth(root.left);int rightDepth = minDepth(root.right);if (root.left == null) {return rightDepth + 1;}if (root.right == null) {return leftDepth + 1;}// 左右结点都不为nullreturn Math.min(leftDepth, rightDepth) + 1;}
}

4.3 重难点

在这里插入图片描述

这篇关于day14-226.翻转二叉树+101. 对称二叉树+104.二叉树的最大深度的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1076583

相关文章

Python中文件读取操作漏洞深度解析与防护指南

《Python中文件读取操作漏洞深度解析与防护指南》在Web应用开发中,文件操作是最基础也最危险的功能之一,这篇文章将全面剖析Python环境中常见的文件读取漏洞类型,成因及防护方案,感兴趣的小伙伴可... 目录引言一、静态资源处理中的路径穿越漏洞1.1 典型漏洞场景1.2 os.path.join()的陷

Spring Boot拦截器Interceptor与过滤器Filter深度解析(区别、实现与实战指南)

《SpringBoot拦截器Interceptor与过滤器Filter深度解析(区别、实现与实战指南)》:本文主要介绍SpringBoot拦截器Interceptor与过滤器Filter深度解析... 目录Spring Boot拦截器(Interceptor)与过滤器(Filter)深度解析:区别、实现与实

MyBatis分页插件PageHelper深度解析与实践指南

《MyBatis分页插件PageHelper深度解析与实践指南》在数据库操作中,分页查询是最常见的需求之一,传统的分页方式通常有两种内存分页和SQL分页,MyBatis作为优秀的ORM框架,本身并未提... 目录1. 为什么需要分页插件?2. PageHelper简介3. PageHelper集成与配置3.

Maven 插件配置分层架构深度解析

《Maven插件配置分层架构深度解析》:本文主要介绍Maven插件配置分层架构深度解析,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录Maven 插件配置分层架构深度解析引言:当构建逻辑遇上复杂配置第一章 Maven插件配置的三重境界1.1 插件配置的拓扑

Python中__init__方法使用的深度解析

《Python中__init__方法使用的深度解析》在Python的面向对象编程(OOP)体系中,__init__方法如同建造房屋时的奠基仪式——它定义了对象诞生时的初始状态,下面我们就来深入了解下_... 目录一、__init__的基因图谱二、初始化过程的魔法时刻继承链中的初始化顺序self参数的奥秘默认

SpringCloud动态配置注解@RefreshScope与@Component的深度解析

《SpringCloud动态配置注解@RefreshScope与@Component的深度解析》在现代微服务架构中,动态配置管理是一个关键需求,本文将为大家介绍SpringCloud中相关的注解@Re... 目录引言1. @RefreshScope 的作用与原理1.1 什么是 @RefreshScope1.

Python 中的异步与同步深度解析(实践记录)

《Python中的异步与同步深度解析(实践记录)》在Python编程世界里,异步和同步的概念是理解程序执行流程和性能优化的关键,这篇文章将带你深入了解它们的差异,以及阻塞和非阻塞的特性,同时通过实际... 目录python中的异步与同步:深度解析与实践异步与同步的定义异步同步阻塞与非阻塞的概念阻塞非阻塞同步

Redis中高并发读写性能的深度解析与优化

《Redis中高并发读写性能的深度解析与优化》Redis作为一款高性能的内存数据库,广泛应用于缓存、消息队列、实时统计等场景,本文将深入探讨Redis的读写并发能力,感兴趣的小伙伴可以了解下... 目录引言一、Redis 并发能力概述1.1 Redis 的读写性能1.2 影响 Redis 并发能力的因素二、

最新Spring Security实战教程之表单登录定制到处理逻辑的深度改造(最新推荐)

《最新SpringSecurity实战教程之表单登录定制到处理逻辑的深度改造(最新推荐)》本章节介绍了如何通过SpringSecurity实现从配置自定义登录页面、表单登录处理逻辑的配置,并简单模拟... 目录前言改造准备开始登录页改造自定义用户名密码登陆成功失败跳转问题自定义登出前后端分离适配方案结语前言

Redis 内存淘汰策略深度解析(最新推荐)

《Redis内存淘汰策略深度解析(最新推荐)》本文详细探讨了Redis的内存淘汰策略、实现原理、适用场景及最佳实践,介绍了八种内存淘汰策略,包括noeviction、LRU、LFU、TTL、Rand... 目录一、 内存淘汰策略概述二、内存淘汰策略详解2.1 ​noeviction(不淘汰)​2.2 ​LR