Studying-代码随想录训练营day14| 226.翻转二叉树、101.对称二叉树、104.二叉树的最大深度、111.二叉树的最小深度

本文主要是介绍Studying-代码随想录训练营day14| 226.翻转二叉树、101.对称二叉树、104.二叉树的最大深度、111.二叉树的最小深度,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

第十四天,(ง •_•)ง💪💪,编程语言:C++

目录

226.翻转二叉树

101.对称二叉树

100.相同的树 

572.另一个树的子树

104.二叉树的最大深度

559.n叉树的最大深度

111.二叉树的最小深度

总结


226.翻转二叉树

文档讲解:代码随想录翻转二叉树

视频讲解:手撕翻转二叉树

题目:

初看:本题翻转二叉树不仅仅是把根节点的左右子树进行了翻转,也把子节点下面的左右子树都进行了翻转。需要对所有中间节点(非叶子节点)进行处理。

代码:前序遍历(递归法)

//时间复杂度O(n)
//空间复杂度O(n)
class Solution {
public:void reverseNode(TreeNode* root) {if (root == nullptr || (root->left == nullptr && root->right == nullptr)) return;TreeNode* tmp = root->left; //中root->left = root->right;root->right = tmp;//swap(root->left, root->right);reverseNode(root->left); //左reverseNode(root->right);//右}TreeNode* invertTree(TreeNode* root) { reverseNode(root);return root;}
};

代码: 层次遍历(广度优先遍历)

//时间复杂度O(n)
//空间复杂度O(n)
class Solution {
public:TreeNode* invertTree(TreeNode* root) {queue<TreeNode*> que;if (root != NULL) que.push(root);while (!que.empty()) {int size = que.size();for (int i = 0; i < size; i++) {TreeNode* node = que.front();que.pop();swap(node->left, node->right); // 节点处理if (node->left) que.push(node->left);if (node->right) que.push(node->right);}}return root;}
};

注意:此题能够使用前序遍历和后序遍历,逻辑基本一致,但如果采用中序遍历的方式,要注意把中节点处理后,右子树就变成了左子树,左子树就变成了右子树,因此下次处理的时候仍应处理的是左子树(原右子树)

class Solution {
public:TreeNode* invertTree(TreeNode* root) {if (root == NULL) return root;invertTree(root->left);         // 左swap(root->left, root->right);  // 中invertTree(root->left);         // 注意 这里依然要遍历左孩子,因为中间节点已经翻转了return root;}
};

101.对称二叉树

文档讲解:代码随想录对称二叉树

视频讲解:手撕对称二叉树

题目:

初看:对称二叉树从根节点开始,往下比较左右节点,之后往下需要分为两条道路,一条左右子树的外层节点,一条比较左右子树的内层节点。因此实际上是比较左右两棵树是否相等。

代码:后序遍历(递归法)

//时间复杂度O(n)
//空间复杂度O(n)
class Solution {
public:bool compare(TreeNode* left, TreeNode* right) {if(left == NULL && right == NULL) return true; //都为空返回trueelse if(left == NULL || right == NULL) return false; //有一个为空另一个不为空(都为空前面判断了)返回falseelse if(left->val != right->val) return false; //都不为空但是值不相等else { //都不为空且值相等,向下继续遍历bool outside = compare(left->left, right->right); //外侧比较bool inside = compare(left->right, right->left); //内测比较return outside && inside; //都为true才返回true;}}//递归法bool isSymmetric(TreeNode* root) {if(root == nullptr) return true;return compare(root->left, root->right);}
};

学习:

  1. 本题需要遍历两棵树而且要比较内侧和外侧的节点,所以准确的来说是一个树的遍历顺序是左右中,一个树的遍历顺序是右左中。这都可以理解为一种后序遍历,把孩子的信息反馈到父节点身上。
  2. 本题的递归三部曲:①确定递归函数的参数和返回值:本题需要比较左右子树,因此参数肯定为左子树和右子树的节点,其次本题是判断正确,因此返回bool类型。②确定终止条件:用清楚节点存在的情况:左节点为空,右节点不为空;左不为空,右为空;左右都为空;左右都不为空,比较节点数值。③确定单层递归逻辑:左右节点都不为空,且数值相同时才进入单层递归的逻辑。单层递归的逻辑就是比较:比较二叉树外侧是否对称,传入的是左节点的左孩子,右节点的右孩子;比较内侧是否对称,传入左节点的右孩子,右节点的左孩子;如果左右都对称就返回true ,有一侧不对称就返回false。

代码:迭代法,注意加入节点的顺序即可

class Solution {
public://迭代法bool isSymmetric(TreeNode* root) {queue<TreeNode*> que;if(root == nullptr) return true;que.push(root->left);que.push(root->right);while(!que.empty()) {TreeNode* left = que.front();que.pop();TreeNode* right = que.front();que.pop();if(left == NULL && right == NULL) continue; //都为空进行后序节点比较else if(left == NULL || right == NULL) return false; //有一个为空另一个不为空(都为空前面判断了)返回falseelse if(left->val != right->val) return false; //都不为空但是值不相等else {//按顺序加入节点que.push(left->left);   // 加入左节点左孩子que.push(right->right); // 加入右节点右孩子que.push(left->right);  // 加入左节点右孩子que.push(right->left);  // 加入右节点左孩子}}return true;}
};

注意:迭代法中使用了队列,但实际上并不是层序遍历,而是仅仅通过一个容器来成对的存放我们要比较的元素,知道这一本质之后就发现,用队列,用栈,甚至用数组,都是可以的。

其他题目:

100.相同的树 

题目:

初看:和左右子树对称一样,只不过没有了 根节点,比较的节点也变为了一一对应的关系。

代码:

//时间复杂度O(min(m,n))
//空间复杂度O(min(m,n))
class Solution {
public:bool isSameTree(TreeNode* p, TreeNode* q) {queue<TreeNode*> que;if (!p && !q) return true;//载入两个节点依次进行判断que.push(p);que.push(q);while(!que.empty()) {//取出需要比较的节点TreeNode* node1 = que.front(); que.pop();TreeNode* node2 = que.front(); que.pop();if (node1 == nullptr && node2 == nullptr) continue; //都为空进行下一轮判断else if (node1 == nullptr || node2 == nullptr) return false; //有一个不为空,返回错误else if (node1->val != node2->val) return false; //都不为空但是值不等else {//注意载入节点的顺序que.push(node1->left);que.push(node2->left);que.push(node1->right);que.push(node2->right);}}return true;}
};

572.另一个树的子树

题目:

初看: 本题事实上与找到相同的树是一样的,只不过它还需要遍历每一个节点。

代码:

//时间复杂度O(n*m)
class Solution {
public://暴力匹配==寻找相同的树bool compare(TreeNode* root, TreeNode* subRoot) {queue<TreeNode*> que;//载入两个节点依次进行判断que.push(root);que.push(subRoot);while(!que.empty()) {//取出需要比较的节点TreeNode* node1 = que.front(); que.pop();TreeNode* node2 = que.front(); que.pop();if (node1 == nullptr && node2 == nullptr) continue; //都为空进行下一轮判断else if (node1 == nullptr || node2 == nullptr) return false; //有一个不为空,返回错误else if (node1->val != node2->val) return false; //都不为空但是值不等else {//注意载入节点的顺序que.push(node1->left);que.push(node2->left);que.push(node1->right);que.push(node2->right);}}return true;}bool isSubtree(TreeNode* root, TreeNode* subRoot) {//广度优先遍历+暴力匹配//广度优先遍历queue<TreeNode*> que;if (root != nullptr) que.push(root);if (subRoot == nullptr) return true;bool result;while (!que.empty()) {TreeNode* node = que.front(); que.pop();if (node->val == subRoot->val) {result = compare(node, subRoot);cout << result << endl;if(result == true) return true;}if(node->left) que.push(node->left);if(node->right) que.push(node->right);}return false;}
};

注意:本题还可以采用KMP算法,和哈希筛选等方法,但过于复杂不利于理解,故没有给出。可前往力扣查看对应例题详解。


104.二叉树的最大深度

文本讲解: 代码随想录二叉树的最大深度

视频讲解:手撕二叉树的最大深度

题目:

学习:昨天使用了层次遍历的方式求解本题,实际上本题也可以使用深度优先遍历的方式来进行求解。本题是要查找树的最大深度,实际上这与树的高度是一一对应的,根节点的高度就是树的最大深度,因此可以采取前序遍历和后序遍历的方式,来查找根节点的高度。

代码:后序遍历(递归法)

注:相当于每次递归后depth深度+1,之后返回左子树和右子树之中最大的那个深度。

//时间复杂度O(n)
//空间复杂度O(n)
class Solution {
public:int getdepth(TreeNode* node) {if (node == NULL) return 0;int leftdepth = getdepth(node->left);       // 左int rightdepth = getdepth(node->right);     // 右int depth = 1 + max(leftdepth, rightdepth); // 中return depth;}int maxDepth(TreeNode* root) {return getdepth(root);}
};

代码:前序遍历(递归法)

注:前序遍历相比之下复杂一些,这是因为它需要先处理节点,再进行递归,因此需要一个辅助量result,每次递归前进行赋值判断。实际含义就是先找寻左子树中最大深度,保存最大深度,然后看右子树有没有更大的深度,再进行赋值。

class Solution {
public:int result;void getdepth(TreeNode* node, int depth) {result = depth > result ? depth : result; // 中if (node->left == NULL && node->right == NULL) return ;if (node->left) { // 左depth++;    // 深度+1getdepth(node->left, depth);depth--;    // 回溯,深度-1}if (node->right) { // 右depth++;    // 深度+1getdepth(node->right, depth);depth--;    // 回溯,深度-1}return ;}int maxDepth(TreeNode* root) {result = 0;if (root == NULL) return result;getdepth(root, 1);return result;}
};

其他题目:

559.n叉树的最大深度

题目:

学习:本题和求二叉树的最大深度逻辑基本相同,只不过是把左右孩子换成了一个数组,增加一个for循环遍历孩子即可。

代码:层次遍历

//时间复杂度O(n)
//空间复杂度O(n)
class Solution {
public:int maxDepth(Node* root) {//最大深度就是需要遍历的层数queue<Node*> que;int depth = 0; //记入深度if (root != nullptr) que.push(root);while (!que.empty()) {int size = que.size();//每进行循环深度加1depth++;for (int i = 0; i < size; i++) {Node* node = que.front();que.pop();for (auto it = node->children.begin(); it != node->children.end(); it++) {que.push(*it);}}}return depth;}
};

代码:后序遍历(递归法)

//时间复杂度O(n)
//空间复杂度O(n)
class Solution {
public:int maxDepth(Node* root) {if (root == 0) return 0;int depth = 0;//求孩子的最大深度for (int i = 0; i < root->children.size(); i++) {depth = max (depth, maxDepth(root->children[i]));}//加上根节点return depth + 1;}
};

111.二叉树的最小深度

文档讲解:代码随想录二叉树的最小深度

视频讲解:手撕二叉树的最小深度

题目:

学习: 昨天同样也是用了层次遍历的方法求解本题,本题也能够使用迭代法进行处理,但需要注意的是,只有遍历到叶子节点(左右节点都没有时)才算是遍历到了合法的深度位置。

代码:后序遍历(递归)

//时间复杂度O(n)
//空间复杂度O(n)
class Solution {
public:int getDepth(TreeNode* node) {if (node == NULL) return 0;int leftDepth = getDepth(node->left);           // 左int rightDepth = getDepth(node->right);         // 右// 中//只有遍历到一个树的叶子节点(没有孩子)才算是终止// 当一个左子树为空,右不为空,这时并不是最低点,它可能还有孩子if (node->left == NULL && node->right != NULL) { return 1 + rightDepth;}   // 当一个右子树为空,左不为空,这时并不是最低点,它可能还有孩子if (node->left != NULL && node->right == NULL) { return 1 + leftDepth;}//两边都有孩子才取最小的深度int result = 1 + min(leftDepth, rightDepth);return result;}int minDepth(TreeNode* root) {return getDepth(root);}
};

代码:层次遍历

class Solution {
public:int minDepth(TreeNode* root) {//最小深度,就是在遍历每一层节点的时候,如果发现该节点没有子节点则停下循环。queue<TreeNode*> que;int depth = 0; //记入深度if (root != nullptr) que.push(root);while (!que.empty()) {int size = que.size();//每进行循环深度加1depth++;for (int i = 0; i < size; i++) {TreeNode* node = que.front();que.pop();if (node->left) que.push(node->left);if (node->right) que.push(node->right);if (node->right == nullptr && node->left == nullptr) {return depth;}}}return depth;}
};

总结

二叉树遍历有两种方式:广度优先遍历,深度优先遍历。深度优先遍历又分为三种:前序遍历、后序遍历、中序遍历。广度优先遍历就是层次遍历。

二叉树遍历的代码有三种:递归法求前中后序遍历,迭代法使用栈求前中后序遍历,迭代法使用队列求层次遍历。

这篇关于Studying-代码随想录训练营day14| 226.翻转二叉树、101.对称二叉树、104.二叉树的最大深度、111.二叉树的最小深度的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1076179

相关文章

C#实现千万数据秒级导入的代码

《C#实现千万数据秒级导入的代码》在实际开发中excel导入很常见,现代社会中很容易遇到大数据处理业务,所以本文我就给大家分享一下千万数据秒级导入怎么实现,文中有详细的代码示例供大家参考,需要的朋友可... 目录前言一、数据存储二、处理逻辑优化前代码处理逻辑优化后的代码总结前言在实际开发中excel导入很

SpringBoot+RustFS 实现文件切片极速上传的实例代码

《SpringBoot+RustFS实现文件切片极速上传的实例代码》本文介绍利用SpringBoot和RustFS构建高性能文件切片上传系统,实现大文件秒传、断点续传和分片上传等功能,具有一定的参考... 目录一、为什么选择 RustFS + SpringBoot?二、环境准备与部署2.1 安装 RustF

Python实现Excel批量样式修改器(附完整代码)

《Python实现Excel批量样式修改器(附完整代码)》这篇文章主要为大家详细介绍了如何使用Python实现一个Excel批量样式修改器,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一... 目录前言功能特性核心功能界面特性系统要求安装说明使用指南基本操作流程高级功能技术实现核心技术栈关键函

深度解析Python中递归下降解析器的原理与实现

《深度解析Python中递归下降解析器的原理与实现》在编译器设计、配置文件处理和数据转换领域,递归下降解析器是最常用且最直观的解析技术,本文将详细介绍递归下降解析器的原理与实现,感兴趣的小伙伴可以跟随... 目录引言:解析器的核心价值一、递归下降解析器基础1.1 核心概念解析1.2 基本架构二、简单算术表达

深度解析Java @Serial 注解及常见错误案例

《深度解析Java@Serial注解及常见错误案例》Java14引入@Serial注解,用于编译时校验序列化成员,替代传统方式解决运行时错误,适用于Serializable类的方法/字段,需注意签... 目录Java @Serial 注解深度解析1. 注解本质2. 核心作用(1) 主要用途(2) 适用位置3

Java MCP 的鉴权深度解析

《JavaMCP的鉴权深度解析》文章介绍JavaMCP鉴权的实现方式,指出客户端可通过queryString、header或env传递鉴权信息,服务器端支持工具单独鉴权、过滤器集中鉴权及启动时鉴权... 目录一、MCP Client 侧(负责传递,比较简单)(1)常见的 mcpServers json 配置

Redis实现高效内存管理的示例代码

《Redis实现高效内存管理的示例代码》Redis内存管理是其核心功能之一,为了高效地利用内存,Redis采用了多种技术和策略,如优化的数据结构、内存分配策略、内存回收、数据压缩等,下面就来详细的介绍... 目录1. 内存分配策略jemalloc 的使用2. 数据压缩和编码ziplist示例代码3. 优化的

Maven中生命周期深度解析与实战指南

《Maven中生命周期深度解析与实战指南》这篇文章主要为大家详细介绍了Maven生命周期实战指南,包含核心概念、阶段详解、SpringBoot特化场景及企业级实践建议,希望对大家有一定的帮助... 目录一、Maven 生命周期哲学二、default生命周期核心阶段详解(高频使用)三、clean生命周期核心阶

Python 基于http.server模块实现简单http服务的代码举例

《Python基于http.server模块实现简单http服务的代码举例》Pythonhttp.server模块通过继承BaseHTTPRequestHandler处理HTTP请求,使用Threa... 目录测试环境代码实现相关介绍模块简介类及相关函数简介参考链接测试环境win11专业版python

Python从Word文档中提取图片并生成PPT的操作代码

《Python从Word文档中提取图片并生成PPT的操作代码》在日常办公场景中,我们经常需要从Word文档中提取图片,并将这些图片整理到PowerPoint幻灯片中,手动完成这一任务既耗时又容易出错,... 目录引言背景与需求解决方案概述代码解析代码核心逻辑说明总结引言在日常办公场景中,我们经常需要从 W