js迪杰斯特拉算法求最短路径

2024-06-19 21:08

本文主要是介绍js迪杰斯特拉算法求最短路径,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

 

1.后台生成矩阵

名词解释和下图参考:https://blog.csdn.net/csdnxcn/article/details/80057574

814286-20181012093809324-1159397656.png

 

double[,] arr = new double[allVertices.Count(), allVertices.Count()]; //矩阵 

//allVertices所有三维坐标点的集合

814286-20181012094047352-1734830214.png

//lines 所有两点的连线

814286-20181012094201515-169113443.png

 

 

for (int i = 0; i < allVertices.Count(); i++)
{
for (int j = 0; j < allVertices.Count(); j++)
{
var start1 = allVertices[i].Point; //起点
var end1 = allVertices[j].Point; //终点
//lines 两点的连线集合
var line = lines.FirstOrDefault(ee => (ee.StartPoint == start1 && ee.EndPoint == end1)|| (ee.StartPoint == end1 && ee.EndPoint == start1/*起点终点互换*/));
if (start1 == end1)
{//同一个点
arr[i, j] = 0;
}
else
{
if (line != null)
{
arr[i, j] = double.Parse(line.Remark); //长度
}
else
{//两点未连接 此路不通
arr[i, j] =1.0/0.0; //Infinity
}
}
}
}

return arr;

2.dijkstra算法

/**
* Dijkstra算法
*
* @author wupanpan@baidu.com
* @date 2014-03-26
*/

/**
* @const
*/
var POS_INFINITY = Infinity;

/**
* @param {number} sourceV 源点的索引,从0开始
* @param {Array} adjMatrix 图的邻接矩阵,是一个二维数组
*/

function dijkstra(sourceV, adjMatrix) {
var set = [],
path = [],

dist = [];
distCopy = [],
vertexNum = adjMatrix.length;

var temp, u,
count = 0;

// 初始化
for (var i = 0; i < vertexNum; i++) {
distCopy[i] = dist[i] = POS_INFINITY;
set[i] = false;
}
distCopy[sourceV] = dist[sourceV] = 0;

while (count < vertexNum) {
u = distCopy.indexOf(Math.min.apply(Math, distCopy));
set[u] = true;
distCopy[u] = POS_INFINITY;

for (var i = 0; i < vertexNum; i++) {
if (!set[i] && ((temp = dist[u] + adjMatrix[u][i]) < dist[i])) {
distCopy[i] = dist[i] = temp;
path[i] = u;
}
}
count++;
}

return {
path: path,
dist: dist
};
}

/**
* @param {number} v 源点索引, 从0开始
* @param {number} d 非源点索引, 从0开始
* @param {Array} adjMatrix 图的邻接矩阵,是一个二维数组
*/
function searchPath(v, d, adjMatrix) {
var graph = dijkstra(v, adjMatrix),
path = graph.path,
dist = graph.dist;

var prev = path[d],
queue = [],
str = '';

queue.push(d);
while(prev != v) {
queue.push(prev);
prev = path[prev];
}
queue.push(v);

for (var j = queue.length - 1; j >= 0; j--) {
str +=queue.pop() + '->';
}
console.log('path',str);
var arr=str.split('->');
if(str.endsWith('->')){
arr.pop();
}
var rarr=[];//字符串数组转int数组
for(var i=0;i<arr.length;i++){
rarr.push(parseInt(arr[i]));
}
return rarr;
}


/**
* 测试数据
*/
var adjM = [
[0, 4, 2, POS_INFINITY, POS_INFINITY, POS_INFINITY],
[4, 0, 1, 5, POS_INFINITY, POS_INFINITY],
[2, 1, 0, 8, 10, POS_INFINITY],
[POS_INFINITY, 5, 8, 0, 2, 6],
[POS_INFINITY, POS_INFINITY, 10, 2, 0, 3],
[POS_INFINITY, POS_INFINITY, POS_INFINITY, 6, 3, 0]
];

3.使用算法求最短路径

814286-20181012091958954-657687797.png

 

5个点坐标如上图 虚线表示两点相连

1:  0,0,0
2:  1,1,0
3:  -1,-1,0
4:  2,0,0
5:  0,-1,0

 

请求后台生成的矩阵为:

var pathMatrix = [
[
0,
1.73,
1.73,
"Infinity",
1
],
[
1.73,
0,
"Infinity",
1.73,
"Infinity"
],
[
1.73,
"Infinity",
0,
"Infinity",
"Infinity"
],
[
"Infinity",
1.73,
"Infinity",
0,
2.23
],
[
1,
"Infinity",
"Infinity",
2.23,
0
]
];

var ret = searchPath(4, 1, pathMatrix); //从第5点到第2点的最短路径
console.log('index', ret);

 814286-20181012091722447-751725031.png(索引从0开始,对应到图上是 5->1->2)

 4.使用threejs画出路径

(黑色连线;  红绿蓝为xyz辅助线)

814286-20181012092523313-1086862149.png

 

geometryPoint = new THREE.BoxGeometry(0.2, 0.2, 0.2);
var materialPoint = new THREE.MeshBasicMaterial({
color: 0xff00ff,
side: THREE.DoubleSide
});
circlePoint1 = new THREE.Mesh(geometryPoint, materialPoint);
circlePoint1.position.set(0, 0, 0);
scene.add(circlePoint1);

circlePoint2 = circlePoint1.clone();
circlePoint2.position.set(1, 1, 0);
scene.add(circlePoint2);

circlePoint3 = circlePoint1.clone();
circlePoint3.position.set(-1, 1, 0);
scene.add(circlePoint3);


circlePoint4 = circlePoint1.clone();
circlePoint4.position.set(2, 0, 0);
scene.add(circlePoint4);


circlePoint5 = circlePoint1.clone();
circlePoint5.position.set(0, -1, 0);
scene.add(circlePoint5);

scene.add(new THREE.AxesHelper(300));

//画路径

var ret = searchPath(4, 1, pathMatrix);   //从第5点到第2点的最短路径
console.log('index', ret);

var geometry1 = new THREE.Geometry();
for (var i = 0; i < ret.length; i++) {
console.log("circlePoint" + (ret[i] + 1));
var pointObj = eval("circlePoint" + (ret[i] + 1));
console.log('position', pointObj.position);
geometry1.vertices.push(pointObj.position);
}
var line = new THREE.Line(geometry1, new THREE.LineBasicMaterial({
color: 'black'
}), THREE.LinePieces);
scene.add(line);

 

//补充

//threejs求三维两点的距离

var distance = circlePoint4.position.distanceTo(circlePoint5.position);
console.log(distance);

 

From:https://www.cnblogs.com/xuejianxiyang/p/9776319.html

这篇关于js迪杰斯特拉算法求最短路径的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/1076154

相关文章

使用Python获取JS加载的数据的多种实现方法

《使用Python获取JS加载的数据的多种实现方法》在当今的互联网时代,网页数据的动态加载已经成为一种常见的技术手段,许多现代网站通过JavaScript(JS)动态加载内容,这使得传统的静态网页爬取... 目录引言一、动态 网页与js加载数据的原理二、python爬取JS加载数据的方法(一)分析网络请求1

如何更改pycharm缓存路径和虚拟内存分页文件位置(c盘爆红)

《如何更改pycharm缓存路径和虚拟内存分页文件位置(c盘爆红)》:本文主要介绍如何更改pycharm缓存路径和虚拟内存分页文件位置(c盘爆红)问题,具有很好的参考价值,希望对大家有所帮助,如有... 目录先在你打算存放的地方建四个文件夹更改这四个路径就可以修改默认虚拟内存分页js文件的位置接下来从高级-

一文详解如何查看本地MySQL的安装路径

《一文详解如何查看本地MySQL的安装路径》本地安装MySQL对于初学者或者开发人员来说是一项基础技能,但在安装过程中可能会遇到各种问题,:本文主要介绍如何查看本地MySQL安装路径的相关资料,需... 目录1. 如何查看本地mysql的安装路径1.1. 方法1:通过查询本地服务1.2. 方法2:通过MyS

使用雪花算法产生id导致前端精度缺失问题解决方案

《使用雪花算法产生id导致前端精度缺失问题解决方案》雪花算法由Twitter提出,设计目的是生成唯一的、递增的ID,下面:本文主要介绍使用雪花算法产生id导致前端精度缺失问题的解决方案,文中通过代... 目录一、问题根源二、解决方案1. 全局配置Jackson序列化规则2. 实体类必须使用Long封装类3.

VSCode中配置node.js的实现示例

《VSCode中配置node.js的实现示例》本文主要介绍了VSCode中配置node.js的实现示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着... 目录一.node.js下载安装教程二.配置npm三.配置环境变量四.VSCode配置五.心得一.no

Springboot实现推荐系统的协同过滤算法

《Springboot实现推荐系统的协同过滤算法》协同过滤算法是一种在推荐系统中广泛使用的算法,用于预测用户对物品(如商品、电影、音乐等)的偏好,从而实现个性化推荐,下面给大家介绍Springboot... 目录前言基本原理 算法分类 计算方法应用场景 代码实现 前言协同过滤算法(Collaborativ

Python如何调用指定路径的模块

《Python如何调用指定路径的模块》要在Python中调用指定路径的模块,可以使用sys.path.append,importlib.util.spec_from_file_location和exe... 目录一、sys.path.append() 方法1. 方法简介2. 使用示例3. 注意事项二、imp

使用Python实现矢量路径的压缩、解压与可视化

《使用Python实现矢量路径的压缩、解压与可视化》在图形设计和Web开发中,矢量路径数据的高效存储与传输至关重要,本文将通过一个Python示例,展示如何将复杂的矢量路径命令序列压缩为JSON格式,... 目录引言核心功能概述1. 路径命令解析2. 路径数据压缩3. 路径数据解压4. 可视化代码实现详解1

JS+HTML实现在线图片水印添加工具

《JS+HTML实现在线图片水印添加工具》在社交媒体和内容创作日益频繁的今天,如何保护原创内容、展示品牌身份成了一个不得不面对的问题,本文将实现一个完全基于HTML+CSS构建的现代化图片水印在线工具... 目录概述功能亮点使用方法技术解析延伸思考运行效果项目源码下载总结概述在社交媒体和内容创作日益频繁的

Node.js 数据库 CRUD 项目示例详解(完美解决方案)

《Node.js数据库CRUD项目示例详解(完美解决方案)》:本文主要介绍Node.js数据库CRUD项目示例详解(完美解决方案),本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考... 目录项目结构1. 初始化项目2. 配置数据库连接 (config/db.js)3. 创建模型 (models/