算法训练 | 动态规划Part5 | 518.零钱兑换 II、377.组合总和 Ⅳ 、70.爬楼梯 (进阶)

本文主要是介绍算法训练 | 动态规划Part5 | 518.零钱兑换 II、377.组合总和 Ⅳ 、70.爬楼梯 (进阶),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

518. 零钱兑换 II

动态规划法

377. 组合总和 Ⅳ

动态规划法

70. 爬楼梯 (进阶)

动态规划法


518. 零钱兑换 II

  • 题目链接:518. 零钱兑换 II - 力扣(LeetCode)

  • 文章讲解:代码随想录

动态规划法
  • 完全背包:01背包内嵌的循环是从大到小遍历,为了保证每个物品仅被添加一次。而完全背包的物品是可以添加多次的,所以要从小到大去遍历

  • 解题思路

      但本题和纯完全背包不一样,纯完全背包是凑成背包最大价值是多少,而本题是要求凑成总金额的物品组合个数!注意题目描述中是凑成总金额的硬币组合数,组合不强调元素之间的顺序,排列强调元素之间的顺序。

  • 解题步骤

    • 确定dp数组以及下标的含义:dp[j]凑成总金额j的货币组合数为dp[j]

    • dp[j] 就是所有的dp[j - coins[i]](考虑coins[i]的情况)相加。所以递推公式:dp[j] += dp[j - coins[i]];

    • dp数组如何初始化:首先dp[0]一定要为1,dp[0] = 1是 递归公式的基础。如果dp[0] = 0 的话,后面所有推导出来的值都是0了。

    • 确定遍历顺序:本题中我们是外层for循环遍历物品(钱币),内层for遍历背包(金钱总额)。这种遍历顺序中dp[j]里计算的是组合数。如果把两个for交换顺序,此时dp[j]里算出来的就是排列数。

    • 举例推导dp数组:

  • 代码一:动态规划

// 时间复杂度: O(mn),其中 m 是amount,n 是 coins 的长度
// 空间复杂度: O(m)
class Solution {
public:int change(int amount, vector<int>& coins) {vector<int> dp(amount + 1, 0);dp[0] = 1;for (int i = 0; i < coins.size(); i++) { // 遍历物品for (int j = coins[i]; j <= amount; j++) { // 遍历背包dp[j] += dp[j - coins[i]];}}return dp[amount];}
};

377. 组合总和 Ⅳ

  • 题目链接:377. 组合总和 Ⅳ - 力扣(LeetCode)

  • 文章讲解:代码随想录

动态规划法
  • 解题思路

    • 本题题目描述说是求组合,但又说是可以元素相同顺序不同的组合算两个组合,其实就是求排列!

  • 解题步骤

    • 确定dp数组以及下标的含义:dp[i]: 凑成目标正整数为i的排列个数为dp[i]

    • 确定递推公式:dp[i](考虑nums[j])可以由 dp[i - nums[j]](不考虑nums[j]) 推导出来。因为只要得到nums[j],排列个数dp[i - nums[j]],就是dp[i]的一部分。求装满背包有几种方法,递推公式一般都是dp[i] += dp[i - nums[j]];

    • 个数可以不限使用,说明这是一个完全背包。得到的集合是排列,说明需要考虑元素之间的顺序。所以本题遍历顺序最终遍历顺序:target(背包)放在外循环,将nums(物品)放在内循环,内循环从前到后遍历。

    • 举例来推导dp数组:

  • 代码一:动态规划

// 时间复杂度: O(target * n),其中 n 为 nums 的长度
// 空间复杂度: O(target)
class Solution {
public:int combinationSum4(vector<int>& nums, int target) {vector<int> dp(target + 1, 0);dp[0] = 1;for (int i = 0; i <= target; i++) { // 遍历背包for (int j = 0; j < nums.size(); j++) { // 遍历物品if (i - nums[j] >= 0 && dp[i] < INT_MAX - dp[i - nums[j]]) {dp[i] += dp[i - nums[j]];}}}return dp[target];}
};

70. 爬楼梯 (进阶)

  • 题目链接:57. 爬楼梯(第八期模拟笔试)

  • 文章讲解:代码随想录

动态规划法
  • 解题思路

      一步一个台阶,两个台阶,三个台阶,.......,直到 m个台阶。问有多少种不同的方法可以爬到楼顶呢?这又有难度了,这其实是一个完全背包问题。1阶,2阶,.... m阶就是物品,楼顶就是背包。每一阶可以重复使用,例如跳了1阶,还可以继续跳1阶。问跳到楼顶有几种方法其实就是问装满背包有几种方法。

  • 解题步骤

    • 确定dp数组以及下标的含义:dp[i]:爬到有i个台阶的楼顶,有dp[i]种方法。

    • dp数组如何初始化:既然递归公式是 dp[i] += dp[i - j],那么dp[0] 一定为1,dp[0]是递归中一切数值的基础所在,如果dp[0]是0的话,其他数值都是0了。下标非0的dp[i]初始化为0,因为dp[i]是靠dp[i-j]累计上来的,dp[i]本身为0这样才不会影响结果。

    • 确定遍历顺序:这是背包里求排列问题,即:1、2 步 和 2、1 步都是上三个台阶,但是这两种方法不一样!所以需将target放在外循环,将nums放在内循环。每一步可以走多次,这是完全背包,内循环需要从前向后遍历。

  • 代码一:动态规划

// 时间复杂度: O(n * m)
// 空间复杂度: O(n)
#include <iostream>
#include <vector>
using namespace std;
int main() {int n, m;while (cin >> n >> m) {vector<int> dp(n + 1, 0);dp[0] = 1;for (int i = 1; i <= n; i++) { // 遍历背包for (int j = 1; j <= m; j++) { // 遍历物品if (i - j >= 0) dp[i] += dp[i - j];}}cout << dp[n] << endl;}
}

这篇关于算法训练 | 动态规划Part5 | 518.零钱兑换 II、377.组合总和 Ⅳ 、70.爬楼梯 (进阶)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1075786

相关文章

从基础到进阶详解Pandas时间数据处理指南

《从基础到进阶详解Pandas时间数据处理指南》Pandas构建了完整的时间数据处理生态,核心由四个基础类构成,Timestamp,DatetimeIndex,Period和Timedelta,下面我... 目录1. 时间数据类型与基础操作1.1 核心时间对象体系1.2 时间数据生成技巧2. 时间索引与数据

Java调用C#动态库的三种方法详解

《Java调用C#动态库的三种方法详解》在这个多语言编程的时代,Java和C#就像两位才华横溢的舞者,各自在不同的舞台上展现着独特的魅力,然而,当它们携手合作时,又会碰撞出怎样绚丽的火花呢?今天,我们... 目录方法1:C++/CLI搭建桥梁——Java ↔ C# 的“翻译官”步骤1:创建C#类库(.NET

MyBatis编写嵌套子查询的动态SQL实践详解

《MyBatis编写嵌套子查询的动态SQL实践详解》在Java生态中,MyBatis作为一款优秀的ORM框架,广泛应用于数据库操作,本文将深入探讨如何在MyBatis中编写嵌套子查询的动态SQL,并结... 目录一、Myhttp://www.chinasem.cnBATis动态SQL的核心优势1. 灵活性与可

Mybatis嵌套子查询动态SQL编写实践

《Mybatis嵌套子查询动态SQL编写实践》:本文主要介绍Mybatis嵌套子查询动态SQL编写方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录前言一、实体类1、主类2、子类二、Mapper三、XML四、详解总结前言MyBATis的xml文件编写动态SQL

SpringBoot实现Kafka动态反序列化的完整代码

《SpringBoot实现Kafka动态反序列化的完整代码》在分布式系统中,Kafka作为高吞吐量的消息队列,常常需要处理来自不同主题(Topic)的异构数据,不同的业务场景可能要求对同一消费者组内的... 目录引言一、问题背景1.1 动态反序列化的需求1.2 常见问题二、动态反序列化的核心方案2.1 ht

golang实现动态路由的项目实践

《golang实现动态路由的项目实践》本文主要介绍了golang实现动态路由项目实践,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习... 目录一、动态路由1.结构体(数据库的定义)2.预加载preload3.添加关联的方法一、动态路由1

使用雪花算法产生id导致前端精度缺失问题解决方案

《使用雪花算法产生id导致前端精度缺失问题解决方案》雪花算法由Twitter提出,设计目的是生成唯一的、递增的ID,下面:本文主要介绍使用雪花算法产生id导致前端精度缺失问题的解决方案,文中通过代... 目录一、问题根源二、解决方案1. 全局配置Jackson序列化规则2. 实体类必须使用Long封装类3.

Python Selenium动态渲染页面和抓取的使用指南

《PythonSelenium动态渲染页面和抓取的使用指南》在Web数据采集领域,动态渲染页面已成为现代网站的主流形式,本文将从技术原理,环境配置,核心功能系统讲解Selenium在Python动态... 目录一、Selenium技术架构解析二、环境搭建与基础配置1. 组件安装2. 驱动配置3. 基础操作模

Springboot实现推荐系统的协同过滤算法

《Springboot实现推荐系统的协同过滤算法》协同过滤算法是一种在推荐系统中广泛使用的算法,用于预测用户对物品(如商品、电影、音乐等)的偏好,从而实现个性化推荐,下面给大家介绍Springboot... 目录前言基本原理 算法分类 计算方法应用场景 代码实现 前言协同过滤算法(Collaborativ

慢sql提前分析预警和动态sql替换-Mybatis-SQL

《慢sql提前分析预警和动态sql替换-Mybatis-SQL》为防止慢SQL问题而开发的MyBatis组件,该组件能够在开发、测试阶段自动分析SQL语句,并在出现慢SQL问题时通过Ducc配置实现动... 目录背景解决思路开源方案调研设计方案详细设计使用方法1、引入依赖jar包2、配置组件XML3、核心配