代码随想录算法训练营第43天(py)| 动态规划 | 完全背包、518. 零钱兑换 II、377. 组合总和 Ⅳ、爬楼梯

本文主要是介绍代码随想录算法训练营第43天(py)| 动态规划 | 完全背包、518. 零钱兑换 II、377. 组合总和 Ⅳ、爬楼梯,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

完全背包

完全背包和01背包问题唯一不同的地方就是,每种物品有无限件
有N件物品和一个最多能背重量为W的背包。第i件物品的重量是weight[i],得到的价值是value[i] 。每件物品都有无限个(也就是可以放入背包多次),求解将哪些物品装入背包里物品价值总和最大。
01背包内嵌的循环是从大到小遍历,为了保证每个物品仅被添加一次。

for(int i = 0; i < weight.size(); i++) { // 遍历物品for(int j = bagWeight; j >= weight[i]; j--) { // 遍历背包容量dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);}
}

而完全背包的物品是可以添加多次的,所以要从小到大去遍历,即:

// 先遍历物品,再遍历背包
for(int i = 0; i < weight.size(); i++) { // 遍历物品for(int j = weight[i]; j <= bagWeight ; j++) { // 遍历背包容量dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);}
}

在01背包中,遍历物品在外层,遍历容量在内层;
而在完全背包中,两个for遍历的先后顺序不影响.

卡码网-52.携带研究材料

卡码链接

题目

小明是一位科学家,他需要参加一场重要的国际科学大会,以展示自己的最新研究成果。他需要带一些研究材料,但是他的行李箱空间有限。这些研究材料包括实验设备、文献资料和实验样本等等,它们各自占据不同的重量,并且具有不同的价值。

小明的行李箱所能承担的总重量为 N,问小明应该如何抉择,才能携带最大价值的研究材料,每种研究材料可以选择无数次,并且可以重复选择。

输入描述

第一行包含两个整数,N,V,分别表示研究材料的种类和行李空间
接下来包含 N 行,每行两个整数 wi 和 vi,代表第 i 种研究材料的重量和价值

输出描述

输出一个整数,表示最大价值。

if __name__ == '__main__':# 行李容量空间N, bagWeight = map(int, input().split())# 初始化重量和价值的数组weight = []value = []# 逐行读取接下来的N行数据for _ in range(N):w, v = map(int, input().split())weight.append(w)# 重量value.append(v) # 价值dp = [0] * (bagWeight + 1)for i in range(len(weight)):  # 遍历物品for j in range(weight[i] , bagWeight+1):  # 遍历背包容量dp[j] = max(dp[j], dp[j - weight[i]] + value[i])print(dp[-1])

518. 零钱兑换 II

力扣链接
给定不同面额的硬币coins和一个总金额amount。写出函数来计算可以凑成总金额的硬币组合数。假设每一种面额的硬币有无限个。

  1. 确定dp含义
    凑成总金额j的货币组合数为dp[j]
  2. 确定递推公式
    dp[j] 就是所有的dp[j - coins[i]](考虑coins[i]的情况)相加。
    所以递推公式:dp[j] += dp[j - coins[i]];
  3. 初始化
    dp[0] = 1
  4. 确定遍历方向
    外层for循环遍历物品(钱币),内层for遍历背包(金钱总额)。计算的是组合数
    内层for循环遍历物品(钱币),外层for遍历背包(金钱总额)。计算的是排列数
class Solution:def change(self, amount: int, coins: List[int]) -> int:dp = [0]*(amount + 1)dp[0]=1for i in range(len(coins)):for j in range(coins[i], amount+1):dp[j]+=dp[j - coins[i]]return dp[-1]

377. 组合总和 Ⅳ

力扣链接
给定一个由正整数组成且不存在重复数字的数组nums,找出和为给定目标正整数target的排列的个数。

  1. 确定dp含义
    凑成目标正整数为i的排列个数为dp[i]
  2. 确定递推公式
    dp[i] += dp[i - nums[j]]
  3. 初始化
    dp[0] = 1
  4. 确定遍历方向
    求排列数就是外层for遍历背包,内层for循环遍历物品
    target(背包)放在外循环,将nums(物品)放在内循环,内循环从前到后遍历。
class Solution:def combinationSum4(self, nums: List[int], target: int) -> int:dp = [0]*(target+1)dp[0]=1for i in range(1, target+1):for j in range(len(nums)):if i - nums[j] >= 0:dp[i] += dp[i - nums[j]]return dp[-1]

70. 爬楼梯

卡码链接

题目描述

假设你正在爬楼梯。需要 n 阶你才能到达楼顶。
每次你可以爬至多m (1 <= m < n)个台阶。你有多少种不同的方法可以爬到楼顶呢?
注意:给定 n 是一个正整数。

输入描述

输入共一行,包含两个正整数,分别表示n, m

输出描述

输出一个整数,表示爬到楼顶的方法数。

思路

完全背包问题,1阶,2阶,… m阶就是物品,楼顶就是背包。

  1. 确定dp含义
    dp[i]:爬到有i个台阶的楼顶,有dp[i]种方法。
  2. 确定递推公式
    求装满背包有几种方法,递推公式一般都是dp[i] += dp[i - nums[j]];
    本题,dp[i]有几种来源,dp[i - 1],dp[i - 2],dp[i - 3] 等等,即:dp[i - j]
    那么递推公式为:dp[i] += dp[i - j]
  3. 初始化
    dp[0]=1
  4. 确定遍历方向
    target放在外循环,将nums放在内循环
if __name__ == '__main__':n, m = map(int, input().split())dp = [0] * (n+1)dp[0] = 1for j in range(1, n+1):for i in range(1, m+1):if j >= i:dp[j] += dp[j-i]print(dp[-1])

这篇关于代码随想录算法训练营第43天(py)| 动态规划 | 完全背包、518. 零钱兑换 II、377. 组合总和 Ⅳ、爬楼梯的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1075707

相关文章

springboot使用Scheduling实现动态增删启停定时任务教程

《springboot使用Scheduling实现动态增删启停定时任务教程》:本文主要介绍springboot使用Scheduling实现动态增删启停定时任务教程,具有很好的参考价值,希望对大家有... 目录1、配置定时任务需要的线程池2、创建ScheduledFuture的包装类3、注册定时任务,增加、删

利用Python调试串口的示例代码

《利用Python调试串口的示例代码》在嵌入式开发、物联网设备调试过程中,串口通信是最基础的调试手段本文将带你用Python+ttkbootstrap打造一款高颜值、多功能的串口调试助手,需要的可以了... 目录概述:为什么需要专业的串口调试工具项目架构设计1.1 技术栈选型1.2 关键类说明1.3 线程模

SpringBoot基于配置实现短信服务策略的动态切换

《SpringBoot基于配置实现短信服务策略的动态切换》这篇文章主要为大家详细介绍了SpringBoot在接入多个短信服务商(如阿里云、腾讯云、华为云)后,如何根据配置或环境切换使用不同的服务商,需... 目录目标功能示例配置(application.yml)配置类绑定短信发送策略接口示例:阿里云 & 腾

Python Transformers库(NLP处理库)案例代码讲解

《PythonTransformers库(NLP处理库)案例代码讲解》本文介绍transformers库的全面讲解,包含基础知识、高级用法、案例代码及学习路径,内容经过组织,适合不同阶段的学习者,对... 目录一、基础知识1. Transformers 库简介2. 安装与环境配置3. 快速上手示例二、核心模

Java的栈与队列实现代码解析

《Java的栈与队列实现代码解析》栈是常见的线性数据结构,栈的特点是以先进后出的形式,后进先出,先进后出,分为栈底和栈顶,栈应用于内存的分配,表达式求值,存储临时的数据和方法的调用等,本文给大家介绍J... 目录栈的概念(Stack)栈的实现代码队列(Queue)模拟实现队列(双链表实现)循环队列(循环数组

一文带你搞懂Python中__init__.py到底是什么

《一文带你搞懂Python中__init__.py到底是什么》朋友们,今天我们来聊聊Python里一个低调却至关重要的文件——__init__.py,有些人可能听说过它是“包的标志”,也有人觉得它“没... 目录先搞懂 python 模块(module)Python 包(package)是啥?那么 __in

使用Java将DOCX文档解析为Markdown文档的代码实现

《使用Java将DOCX文档解析为Markdown文档的代码实现》在现代文档处理中,Markdown(MD)因其简洁的语法和良好的可读性,逐渐成为开发者、技术写作者和内容创作者的首选格式,然而,许多文... 目录引言1. 工具和库介绍2. 安装依赖库3. 使用Apache POI解析DOCX文档4. 将解析

C++使用printf语句实现进制转换的示例代码

《C++使用printf语句实现进制转换的示例代码》在C语言中,printf函数可以直接实现部分进制转换功能,通过格式说明符(formatspecifier)快速输出不同进制的数值,下面给大家分享C+... 目录一、printf 原生支持的进制转换1. 十进制、八进制、十六进制转换2. 显示进制前缀3. 指

openCV中KNN算法的实现

《openCV中KNN算法的实现》KNN算法是一种简单且常用的分类算法,本文主要介绍了openCV中KNN算法的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录KNN算法流程使用OpenCV实现KNNOpenCV 是一个开源的跨平台计算机视觉库,它提供了各

使用Python实现全能手机虚拟键盘的示例代码

《使用Python实现全能手机虚拟键盘的示例代码》在数字化办公时代,你是否遇到过这样的场景:会议室投影电脑突然键盘失灵、躺在沙发上想远程控制书房电脑、或者需要给长辈远程协助操作?今天我要分享的Pyth... 目录一、项目概述:不止于键盘的远程控制方案1.1 创新价值1.2 技术栈全景二、需求实现步骤一、需求