llama-factory微调工具使用入门

2024-06-19 17:20

本文主要是介绍llama-factory微调工具使用入门,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、定义

  1. 环境配置
  2. 案例: https://zhuanlan.zhihu.com/p/695287607
  3. chatglm3 案例
  4. 多卡训练deepspeed
  5. llama factory 案例Qwen1.5
  6. 报错

二、实现

  1. 环境配置
git clone https://github.com/hiyouga/LLaMA-Factory.git
conda create -n llama_factory python=3.10
conda activate llama_factory
cd LLaMA-Factory
pip install -e '.[torch,metrics]'
如果发生冲突:    pip install --no-deps -e .  

同时对本库的基础安装做一下校验,输入以下命令获取训练相关的参数指导, 否则说明库还没有安装成功

llamafactory-cli train -h

在这里插入图片描述
模型下载与可用性校对

git clone https://www.modelscope.cn/LLM-Research/Meta-Llama-3-8B-Instruct.git
import transformers
import torch# 切换为你下载的模型文件目录, 这里的demo是Llama-3-8B-Instruct
# 如果是其他模型,比如qwen,chatglm,请使用其对应的官方demo
model_id = "/home/Meta-Llama-3-8B-Instruct"pipeline = transformers.pipeline("text-generation",model=model_id,model_kwargs={"torch_dtype": torch.bfloat16},device_map="auto",
)messages = [{"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"},{"role": "user", "content": "Who are you?"},
]prompt = pipeline.tokenizer.apply_chat_template(messages,tokenize=False,add_generation_prompt=True
)terminators = [pipeline.tokenizer.eos_token_id,pipeline.tokenizer.convert_tokens_to_ids("<|eot_id|>")
]outputs = pipeline(prompt,max_new_tokens=256,eos_token_id=terminators,do_sample=True,temperature=0.6,top_p=0.9,
)
print(outputs[0]["generated_text"][len(prompt):])

在这里插入图片描述
2. 案例: https://zhuanlan.zhihu.com/p/695287607

2.1 数据准备
将该自定义数据集放到我们的系统中使用,则需要进行如下两步操作
a 复制该数据集到 data目录下
b 修改 data/dataset_info.json 新加内容完成注册, 该注册同时完成了3件事
b1 自定义数据集的名称为adgen_local,后续训练的时候就使用这个名称来找到该数据集
b2 指定了数据集具体文件位置
b3 定义了原数据集的输入输出和我们所需要的格式之间的映射关系
在这里插入图片描述
2. 微调:
下载模型
>> git clone https://www.modelscope.cn/LLM-Research/Meta-Llama-3-8B-Instruct.git
微调

CUDA_VISIBLE_DEVICES=0 llamafactory-cli train \--stage sft \--do_train \--model_name_or_path /home/Meta-Llama-3-8B-Instruct \--dataset alpaca_gpt4_zh,identity,adgen_local \--dataset_dir ./data \--template llama3 \--finetuning_type lora \--output_dir ./saves/LLaMA3-8B/lora/sft \--overwrite_cache \--overwrite_output_dir \--cutoff_len 1024 \--preprocessing_num_workers 16 \--per_device_train_batch_size 2 \--per_device_eval_batch_size 1 \--gradient_accumulation_steps 8 \--lr_scheduler_type cosine \--logging_steps 50 \--warmup_steps 20 \--save_steps 100 \--eval_steps 50 \--evaluation_strategy steps \--load_best_model_at_end \--learning_rate 5e-5 \--num_train_epochs 5.0 \--max_samples 1000 \--val_size 0.1 \--plot_loss \--fp16

或者:

CUDA_VISIBLE_DEVICES=0 llamafactory-cli train ./examples/train_lora/llama3_lora_sft.yaml

在这里插入图片描述
在这里插入图片描述
3. 推理

CUDA_VISIBLE_DEVICES=0 llamafactory-cli chat ./examples/inferce/llama3_lora_sft.yaml

CUDA_VISIBLE_DEVICES=0 llamafactory-cli chat \--model_name_or_path /home/Meta-Llama-3-8B-Instruct \--adapter_name_or_path ./saves/LLaMA3-8B/lora/sft  \--template llama3 \--finetuning_type lora

在这里插入图片描述
4. 批量预测与训练效果评估

CUDA_VISIBLE_DEVICES=0 llamafactory-cli chat ./examples/train/llama3_lora_predict.yaml

CUDA_VISIBLE_DEVICES=0 llamafactory-cli train \--stage sft \--do_predict \--model_name_or_path /media/codingma/LLM/llama3/Meta-Llama-3-8B-Instruct \--adapter_name_or_path ./saves/LLaMA3-8B/lora/sft  \--dataset alpaca_gpt4_zh,identity,adgen_local \--dataset_dir ./data \--template llama3 \--finetuning_type lora \--output_dir ./saves/LLaMA3-8B/lora/predict \--overwrite_cache \--overwrite_output_dir \--cutoff_len 1024 \--preprocessing_num_workers 16 \--per_device_eval_batch_size 1 \--max_samples 20 \--predict_with_generate

在这里插入图片描述
5. LoRA模型合并导出

CUDA_VISIBLE_DEVICES=0 llamafactory-cli export \--model_name_or_path /home/Meta-Llama-3-8B-Instruct \--adapter_name_or_path ./saves/LLaMA3-8B/lora/sft  \--template llama3 \--finetuning_type lora \--export_dir megred-model-path \--export_size 2 \--export_device cpu \--export_legacy_format False
CUDA_VISIBLE_DEVICES=0 llamafactory-cli export ./examples/merge_lora/llama3_lora_sft.yaml

在这里插入图片描述
6. api 调用

CUDA_VISIBLE_DEVICES=0 API_PORT=8000 nohup llamafactory-cli api \--model_name_or_path /media/codingma/LLM/llama3/Meta-Llama-3-8B-Instruct \--adapter_name_or_path ./saves/LLaMA3-8B/lora/sft \--template llama3 \--finetuning_type lora

项目也支持了基于vllm 的推理后端,但是这里由于一些限制,需要提前将LoRA 模型进行merge,使用merge后的完整版模型目录或者训练前的模型原始目录都可。

CUDA_VISIBLE_DEVICES=0 API_PORT=8000 nohup llamafactory-cli api \--model_name_or_path megred-model-path \--template llama3 \--infer_backend vllm \--vllm_enforce_eager>output.log 2>&1 &

在这里插入图片描述

import os
from openai import OpenAI
from transformers.utils.versions import require_versionrequire_version("openai>=1.5.0", "To fix: pip install openai>=1.5.0")if __name__ == '__main__':# change to your custom portport = 8000client = OpenAI(api_key="0",base_url="http://localhost:{}/v1".format(os.environ.get("API_PORT", 8000)),)messages = []messages.append({"role": "user", "content": "hello, where is USA"})result = client.chat.completions.create(messages=messages, model="test")print(result.choices[0].message)

在这里插入图片描述
7. 测试

CUDA_VISIBLE_DEVICES=0 llamafactory-cli eval ./examples/train/llama3_lora_eval.yaml

CUDA_VISIBLE_DEVICES=0 llamafactory-cli eval \
--model_name_or_path /media/codingma/LLM/llama3/Meta-Llama-3-8B-Instruct \
--template llama3 \
--task mmlu \
--split validation \
--lang en \
--n_shot 5 \
--batch_size 1
  1. chatglm3 案例
    见专题模块

  2. 多卡训练deepspeed
    多卡看llama3_lora_sft_ds0.yaml

  3. 报错

    1,RuntimeError: Failed to import trl.trainer.dpo_trainer because of the following error (look up to see its traceback):
    ‘FieldInfo’ object has no attribute ‘required’
    解决:换干净的环境,重新安装。

这篇关于llama-factory微调工具使用入门的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1075661

相关文章

python中的显式声明类型参数使用方式

《python中的显式声明类型参数使用方式》文章探讨了Python3.10+版本中类型注解的使用,指出FastAPI官方示例强调显式声明参数类型,通过|操作符替代Union/Optional,可提升代... 目录背景python函数显式声明的类型汇总基本类型集合类型Optional and Union(py

Java使用正则提取字符串中的内容的详细步骤

《Java使用正则提取字符串中的内容的详细步骤》:本文主要介绍Java中使用正则表达式提取字符串内容的方法,通过Pattern和Matcher类实现,涵盖编译正则、查找匹配、分组捕获、数字与邮箱提... 目录1. 基础流程2. 关键方法说明3. 常见场景示例场景1:提取所有数字场景2:提取邮箱地址4. 高级

使用SpringBoot+InfluxDB实现高效数据存储与查询

《使用SpringBoot+InfluxDB实现高效数据存储与查询》InfluxDB是一个开源的时间序列数据库,特别适合处理带有时间戳的监控数据、指标数据等,下面详细介绍如何在SpringBoot项目... 目录1、项目介绍2、 InfluxDB 介绍3、Spring Boot 配置 InfluxDB4、I

使用Java读取本地文件并转换为MultipartFile对象的方法

《使用Java读取本地文件并转换为MultipartFile对象的方法》在许多JavaWeb应用中,我们经常会遇到将本地文件上传至服务器或其他系统的需求,在这种场景下,MultipartFile对象非... 目录1. 基本需求2. 自定义 MultipartFile 类3. 实现代码4. 代码解析5. 自定

使用Python实现无损放大图片功能

《使用Python实现无损放大图片功能》本文介绍了如何使用Python的Pillow库进行无损图片放大,区分了JPEG和PNG格式在放大过程中的特点,并给出了示例代码,JPEG格式可能受压缩影响,需先... 目录一、什么是无损放大?二、实现方法步骤1:读取图片步骤2:无损放大图片步骤3:保存图片三、示php

使用Python实现一个简易计算器的新手指南

《使用Python实现一个简易计算器的新手指南》计算器是编程入门的经典项目,它涵盖了变量、输入输出、条件判断等核心编程概念,通过这个小项目,可以快速掌握Python的基础语法,并为后续更复杂的项目打下... 目录准备工作基础概念解析分步实现计算器第一步:获取用户输入第二步:实现基本运算第三步:显示计算结果进

python之uv使用详解

《python之uv使用详解》文章介绍uv在Ubuntu上用于Python项目管理,涵盖安装、初始化、依赖管理、运行调试及Docker应用,强调CI中使用--locked确保依赖一致性... 目录安装与更新standalonepip 安装创建php以及初始化项目依赖管理uv run直接在命令行运行pytho

C#使用Spire.XLS快速生成多表格Excel文件

《C#使用Spire.XLS快速生成多表格Excel文件》在日常开发中,我们经常需要将业务数据导出为结构清晰的Excel文件,本文将手把手教你使用Spire.XLS这个强大的.NET组件,只需几行C#... 目录一、Spire.XLS核心优势清单1.1 性能碾压:从3秒到0.5秒的质变1.2 批量操作的优雅

Kotlin 枚举类使用举例

《Kotlin枚举类使用举例》枚举类(EnumClasses)是Kotlin中用于定义固定集合值的特殊类,它表示一组命名的常量,每个枚举常量都是该类的单例实例,接下来通过本文给大家介绍Kotl... 目录一、编程枚举类核心概念二、基础语法与特性1. 基本定义2. 带参数的枚举3. 实现接口4. 内置属性三、

Java List 使用举例(从入门到精通)

《JavaList使用举例(从入门到精通)》本文系统讲解JavaList,涵盖基础概念、核心特性、常用实现(如ArrayList、LinkedList)及性能对比,介绍创建、操作、遍历方法,结合实... 目录一、List 基础概念1.1 什么是 List?1.2 List 的核心特性1.3 List 家族成