数据结构与算法笔记:基础篇 - 分治算法:谈一谈大规模计算框架MapReduce中的分治思想

本文主要是介绍数据结构与算法笔记:基础篇 - 分治算法:谈一谈大规模计算框架MapReduce中的分治思想,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

概述

MapReduce 是 Google 大数据处理的三姐马车之一,另外两个事 GFS 和 Bigtable。它在倒排索引、PageRank 计算、网页分析等搜索引擎相关的技术中都有大量的应用。

尽管开发一个 MapReduce 看起来很高深。实际上,万变不离其宗,它的本质就是本章要学的这种算法思想,分支算法。


如何理解分支算法?

为什么说 MapReduce 的本质就是分治算法呢?先来看看什么事分治算法?

分治算法(divide and conquer)的核心思想其实就是四个字,分而治之,也就是将原问题划分成 n 个规模较小,并且结构与原问题相似的子问题,递归地解决这些子问题,然后再合并其结果,就得到原问题的解。

这个定义看起来有点类似递归地定义。关于分治和递归,我们在 排序(下) 的时候讲过,分治算法是一种处理问题的思想,递归是一种编程技巧。实际上,分治算法一般都比较适合用递归来实现。分治算法的递归实现中,每一次递归都会涉及三个操作:

  • 分解:将原问题分解为一系列子问题;
  • 解决:递归地求解各个子问题,若子问题足够小,则直接求解;
  • 合并:将子问题的结果合并成原问题。

分治算法能解决的问题,一般要满足以下几个条件:

  • 原问题与分解成的小问题具有相同的模式;
  • 原问题分解的子问题可以独立解决,子问题之间没有相关性,这一点是分治算法跟动态规划的明显区别,等讲到动态规划,会详细对比这两种算法;
  • 具有分解终止条件,也就是说,当问题足够小时,可以直接求解;
  • 可以将子问题合并成原问题,而这个合并操作的复杂度不能太高,否则就起不到减少算法总体复杂度的效果了。

分治算法应用举例分析

理解分治算法的原理并不难,但是要想灵活应用并不容易。所以,接下来,我会带你用分治算法解决我们在讲排序的时候设计的一个问题,加深你对分治算法的理解。

还记得我们在排序算法里讲到的数据的有序度、逆序度的概念吗?我当时讲到,我们用有序度表示一组数据的有序程度,用逆序度表示一组数据的无序程度。

假设我们有 n 哥数据,我们期望数据从小到大排列,那完全有序的数据的有序度就是 n(n-1)/2,逆序度等于 0;相反,倒序排列的数据的有序度就是 0,逆序度就是 n(n-1)/2。除了这两种极端情况外,我们通过计算有序对或逆序对的个数,来表述数据的有序度或逆序度。

在这里插入图片描述

现在的问题是,如何编码求出一组数据的有序对个数或者逆序对个数呢? 因为有序对个数和逆序对个数的求解方式是类似的,所以你可以之思考逆序对个数的求解方法。

最笨的方法是,拿每个数组跟它后面的数字比较,看看有几个比它小。我们把比它小的数字的个数记作 k,通过这样的方式,把每个数字都考察一遍之后,然后对每个数字对应的 k 值求和,最后得到的总和就是逆序对个数。不过,这样擦做的时间复杂度是 O ( n 2 ) O(n^2) O(n2)。有没有更加高效的处理方法呢?

我们用分治法来试试。我们套用分治法的思想来求数组 A 的逆序对个数。我们可以将数组分成前后两半 A1 和 A2,分别计算 A1 和 A2 之间的逆序对个数 K1 和 K2,然后再计算 A1 和 A2 之间逆序对个数 K3。那数组 A 的逆序对个数就等于 K1+K2+K3。

我们前面讲过,使用分治算法其中一个要求是,子问题合并的代价不能太大,否则就起不到了降低时间复杂度的效果了。那回到这个问题,如何快速计算出两个子问题 A1 与 A2 之间的逆序对个数呢?

这里就要借助归并排序算法了。你可以先试着想想,如何借助归并排序算法来解决呢?

归并排序中有一个非常关键的操作,就是将两个有序的小数组,合并成一个有序的数组。实际上,在这个合并的过程中,我们就可以计算这连个小数组的逆序对个数了。每次合并操作,我们都计算逆序对个数,把这些计算出来的逆序对个数求和,就是这个数组的逆序对个数了。

在这里插入图片描述

尽管画了张图来解释,但个人觉得,对于工程师来说,看代码更好理解一些,所以我们把这个过程翻译成了代码,你可以结合着图和文字描述一起看下。

    private int num = 0; // 全局变量或成员变量public int count(int[] a, int n) {num = 0;mergeSortCounting(a, 0, n-1);return num;}private void mergeSortCounting(int[] a, int p, int r) {if (p >= r) return;int q = (p + r) / 2;mergeSortCounting(a, p, q);mergeSortCounting(a, q+1, r);merge(a, p, q, r);}private void merge(int[] a, int p, int q, int r) {int i = p, j = q+1, k = 0;int[] tmp = new int[r-p+1];while (i <= q && j <= r) {if (a[i] < a[j]) {tmp[k++] = a[i++];} else {num += (q-i+1); // 统计p~q之间比a[j]大的元素的个数tmp[k++] = a[i++];}}while (i <= q) { // 处理剩下的tmp[k++] = a[i++];}while (j <= r) { // 处理剩下的tmp[k++] = a[j++];}for (i = 0; i <= r-p; i++) { // 从tmp拷贝回aa[p+i] = tmp[i];}}

很多同学经常会说,某某算法思想如此巧妙,我是怎么也想不到的。实际上,确实是的。有些算法确实非常巧妙,并不是每个人短时间都能想到的。比如这个问题,并不是每个人都能想到可以借助归并排序算法来解决。不夸张地说,如果之前没接触过,觉得部分人都想不到。但是,如果我告诉你可以借助归并排序算法来解决,那你就应该想到如何改造归并排序,来求解这个问题了,只要你能做到这一点,我觉得就很棒了。

关于分治算法,还有两道比较经典的问题:

  • 二维平面上有 n 个点,如何快速计算出两个距离最近的点对?
  • 有两个 nn 的矩阵 A,B,如何快速求解两个矩阵的成绩 C=AB?

分治思想在海量数据处理中的应用

分治算法思想的应用是非常广发的,并不仅限于指导编程和算法设计。它还经常用在海量数据处理的场景中。我们前面讲的数据结构和算法,大部分都是基于内存存储和单机处理。但是,如果要处理的数据量非常大,没法一次性放到内存中,这个时候,这些数据结构和算法就无法工作了。

比如,给 10GB 订单文件按照金额排序这样一个需求,看似是一个很简单的排序问题,但是因为数据量大,有 10GB,而我们机器的内存可能只有 2、3GB 这样子,无法一次性加载到内存,也就无法通过单纯地使用快排、归并排序等基础算法来解决了。

要解决这种数据量大到内存装不下的问题,我们就可以利用分治的思想。我们可以将海量的数据集合根据某种方法,划分为几个小的数据集合,每个小的数据集合单独加载到内存来解决,然后再将小数据集合合并成大数据集合。实际上,利用这种分治的处理思路,不仅仅能克服内存的限制,还能利用多线程或者多机处理,加快处理的速度。

比如刚刚的例子,给 10GB 的订单排序,我们可以先扫描一遍订单,根据订单的金额,将 10GB 的文件划分为几个金额区间。比如订单金额 1 到 100 元的放到一个小文件,101 到 200 的放到另一个文件,以此类推。这样每个小文件都可以单独加载到内存排序,最后将这些有序的小文件合并,就是最终有序的 10GB 订单数据了。

如果订单存储在类似 GFS 这样的分布式系统上,当 10GB 订单被划分成多个小文件的时候,每个文件可以并行加载到多态机器上处理,最后再将结果合并在一起,这样并行处理的速度也加快了很多。不过,这里有一点要注意,就是数据的存储与计算所在的机器是同一个或在网络中靠的很近(比如一个局域网内,数据存取速度很快),否则就会因为数据访问的速度,导致整个处理过程不但不会变快,反而有可能变慢。

你可能还有印象,这个就是我们在讲线性排序的时候举的例子。实际上,在前面已经学习的课程中,还讲了很多利用分治算法来解决的问题。

谈一谈大规模计算框架MapReduce中的分治思想

刚刚举的订单的例子,数据有 10GB 大小,可能给你的感受还不强烈。那如果我们要处理的数据时 1T、10T、100T 这样的数据,那一台机器处理的效率肯定是非常低的。而对于谷歌搜索引擎来说,网页爬取、清洗、分析、分词、计算权重、倒排索引等等各个环节中,都会面对如此海量的数据(比如网页)。所以利用集群并行处理显然是大势所趋。

一台机器过于低效,那我们就把人去拆分到多态机器上来处理。如果拆分之后的小人物之间互不干扰,独立计算,最后再将结果合并。这不就是分治思想吗?

实际上,MapReduce 框架只是一个任务调度器,底层依赖 GFS 来存储数据,依赖 Borg 管理机器。它从 GFS 中拿数据,交给 Brog 中的机器执行,并且时刻监控机器执行的进度,一旦机器出现宕机、进度卡壳等,就重新从 Brog 中调度一台机器执行。

尽管 MapReduce 的模型非常简单,但是在 Google 内部应用非常广泛。它除了可以用来处理这种数据与数据之间存在关系的任务,比如 MapReduce 的经典例子,统计文件中单词出现的频率。此外,它还可以用来处理数据与数据之间没有关系的任务,比如对网页分析、分词等,每个网页可独立的分析、分词,而这两个网页之间没有关系。网页几十亿、上百亿,如果单机处理,效率地下,我们就可以利用 MapReduce 提供可靠、高性能、高容错的并行计算框架,并行地处理这几十亿、上百亿的网页。

小结

本章讲了一种应用非常广泛的算法思想,分治算法。

分治算法用四个字概况就是 “分而治之”,将原问题划分成几个规模较小而结构与原问题相似的子问题,递归地解决这些子问题,然后再合并其结果,就得到原问题的解。这个思想非常简单、好理解。

本章讲解了两种分治算法的经典的应用场景,一个是用来指导编码,降低问题求解的时间复杂度,另一个是解决海量数据处理问题。比如 MapReduce 本质上就是利用了分治思想。

我们也时常感叹 Google 的创新能力如此之强,总是在引领技术的发展。实际上,创新并非离我们很远,创新的源泉来自对事物本质的认识。无数优秀架构设计的思想来源都是基础的数据结构和算法,这本身就是算法的一个魅力所在。

这篇关于数据结构与算法笔记:基础篇 - 分治算法:谈一谈大规模计算框架MapReduce中的分治思想的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1075210

相关文章

Python实现精确小数计算的完全指南

《Python实现精确小数计算的完全指南》在金融计算、科学实验和工程领域,浮点数精度问题一直是开发者面临的重大挑战,本文将深入解析Python精确小数计算技术体系,感兴趣的小伙伴可以了解一下... 目录引言:小数精度问题的核心挑战一、浮点数精度问题分析1.1 浮点数精度陷阱1.2 浮点数误差来源二、基础解决

GSON框架下将百度天气JSON数据转JavaBean

《GSON框架下将百度天气JSON数据转JavaBean》这篇文章主要为大家详细介绍了如何在GSON框架下实现将百度天气JSON数据转JavaBean,文中的示例代码讲解详细,感兴趣的小伙伴可以了解下... 目录前言一、百度天气jsON1、请求参数2、返回参数3、属性映射二、GSON属性映射实战1、类对象映

从基础到高级详解Python数值格式化输出的完全指南

《从基础到高级详解Python数值格式化输出的完全指南》在数据分析、金融计算和科学报告领域,数值格式化是提升可读性和专业性的关键技术,本文将深入解析Python中数值格式化输出的相关方法,感兴趣的小伙... 目录引言:数值格式化的核心价值一、基础格式化方法1.1 三种核心格式化方式对比1.2 基础格式化示例

redis-sentinel基础概念及部署流程

《redis-sentinel基础概念及部署流程》RedisSentinel是Redis的高可用解决方案,通过监控主从节点、自动故障转移、通知机制及配置提供,实现集群故障恢复与服务持续可用,核心组件包... 目录一. 引言二. 核心功能三. 核心组件四. 故障转移流程五. 服务部署六. sentinel部署

从基础到进阶详解Python条件判断的实用指南

《从基础到进阶详解Python条件判断的实用指南》本文将通过15个实战案例,带你大家掌握条件判断的核心技巧,并从基础语法到高级应用一网打尽,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一... 目录​引言:条件判断为何如此重要一、基础语法:三行代码构建决策系统二、多条件分支:elif的魔法三、

Python WebSockets 库从基础到实战使用举例

《PythonWebSockets库从基础到实战使用举例》WebSocket是一种全双工、持久化的网络通信协议,适用于需要低延迟的应用,如实时聊天、股票行情推送、在线协作、多人游戏等,本文给大家介... 目录1. 引言2. 为什么使用 WebSocket?3. 安装 WebSockets 库4. 使用 We

Python文本相似度计算的方法大全

《Python文本相似度计算的方法大全》文本相似度是指两个文本在内容、结构或语义上的相近程度,通常用0到1之间的数值表示,0表示完全不同,1表示完全相同,本文将深入解析多种文本相似度计算方法,帮助您选... 目录前言什么是文本相似度?1. Levenshtein 距离(编辑距离)核心公式实现示例2. Jac

redis数据结构之String详解

《redis数据结构之String详解》Redis以String为基础类型,因C字符串效率低、非二进制安全等问题,采用SDS动态字符串实现高效存储,通过RedisObject封装,支持多种编码方式(如... 目录一、为什么Redis选String作为基础类型?二、SDS底层数据结构三、RedisObject

从基础到高阶详解Python多态实战应用指南

《从基础到高阶详解Python多态实战应用指南》这篇文章主要从基础到高阶为大家详细介绍Python中多态的相关应用与技巧,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、多态的本质:python的“鸭子类型”哲学二、多态的三大实战场景场景1:数据处理管道——统一处理不同数据格式

Python学习笔记之getattr和hasattr用法示例详解

《Python学习笔记之getattr和hasattr用法示例详解》在Python中,hasattr()、getattr()和setattr()是一组内置函数,用于对对象的属性进行操作和查询,这篇文章... 目录1.getattr用法详解1.1 基本作用1.2 示例1.3 原理2.hasattr用法详解2.