第100+12步 ChatGPT学习:R实现KNN分类

2024-06-19 13:12

本文主要是介绍第100+12步 ChatGPT学习:R实现KNN分类,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

基于R 4.2.2版本演示

一、写在前面

有不少大佬问做机器学习分类能不能用R语言,不想学Python咯。

答曰:可!用GPT或者Kimi转一下就得了呗。

加上最近也没啥内容写了,就帮各位搬运一下吧。

二、R代码实现KNN分类

(1)导入数据

我习惯用RStudio自带的导入功能:

(2)建立KNN模型

# Load necessary libraries
library(caret)
library(pROC)
library(ggplot2)# Assume 'data' is your dataframe containing the data
# Set seed to ensure reproducibility
set.seed(123)# Split data into training and validation sets (80% training, 20% validation)
trainIndex <- createDataPartition(data$X, p = 0.8, list = FALSE)
trainData <- data[trainIndex, ]
validData <- data[-trainIndex, ]# Convert the target variable to a factor for classification
trainData$X <- as.factor(trainData$X)
validData$X <- as.factor(validData$X)# Define control method for training with cross-validation
trainControl <- trainControl(method = "cv", number = 10)# Fit KNN model on the training set
model <- train(X ~ ., data = trainData, method = "knn", trControl = trainControl, preProcess = "scale")# Predict on the training and validation sets
trainPredict <- predict(model, trainData, type = "prob")[,2]
validPredict <- predict(model, validData, type = "prob")[,2]# Convert true values to factor for ROC analysis
trainData$X <- as.factor(trainData$X)
validData$X <- as.factor(validData$X)# Calculate ROC curves and AUC values
trainRoc <- roc(response = trainData$X, predictor = trainPredict)
validRoc <- roc(response = validData$X, predictor = validPredict)# Plot ROC curves with AUC values
ggplot(data = data.frame(fpr = trainRoc$specificities, tpr = trainRoc$sensitivities), aes(x = 1 - fpr, y = tpr)) +geom_line(color = "blue") +geom_area(alpha = 0.2, fill = "blue") +geom_abline(slope = 1, intercept = 0, linetype = "dashed", color = "black") +ggtitle("Training ROC Curve") +xlab("False Positive Rate") +ylab("True Positive Rate") +annotate("text", x = 0.5, y = 0.1, label = paste("Training AUC =", round(auc(trainRoc), 2)), hjust = 0.5, color = "blue")ggplot(data = data.frame(fpr = validRoc$specificities, tpr = validRoc$sensitivities), aes(x = 1 - fpr, y = tpr)) +geom_line(color = "red") +geom_area(alpha = 0.2, fill = "red") +geom_abline(slope = 1, intercept = 0, linetype = "dashed", color = "black") +ggtitle("Validation ROC Curve") +xlab("False Positive Rate") +ylab("True Positive Rate") +annotate("text", x = 0.5, y = 0.2, label = paste("Validation AUC =", round(auc(validRoc), 2)), hjust = 0.5, color = "red")# Calculate confusion matrices based on 0.5 cutoff for probability
confMatTrain <- table(trainData$X, trainPredict >= 0.5)
confMatValid <- table(validData$X, validPredict >= 0.5)# Function to plot confusion matrix using ggplot2
plot_confusion_matrix <- function(conf_mat, dataset_name) {conf_mat_df <- as.data.frame(as.table(conf_mat))colnames(conf_mat_df) <- c("Actual", "Predicted", "Freq")p <- ggplot(data = conf_mat_df, aes(x = Predicted, y = Actual, fill = Freq)) +geom_tile(color = "white") +geom_text(aes(label = Freq), vjust = 1.5, color = "black", size = 5) +scale_fill_gradient(low = "white", high = "steelblue") +labs(title = paste("Confusion Matrix -", dataset_name, "Set"), x = "Predicted Class", y = "Actual Class") +theme_minimal() +theme(axis.text.x = element_text(angle = 45, hjust = 1), plot.title = element_text(hjust = 0.5))print(p)
}
# Now call the function to plot and display the confusion matrices
plot_confusion_matrix(confMatTrain, "Training")
plot_confusion_matrix(confMatValid, "Validation")# Extract values for calculations
a_train <- confMatTrain[1, 1]
b_train <- confMatTrain[1, 2]
c_train <- confMatTrain[2, 1]
d_train <- confMatTrain[2, 2]a_valid <- confMatValid[1, 1]
b_valid <- confMatValid[1, 2]
c_valid <- confMatValid[2, 1]
d_valid <- confMatValid[2, 2]# Training Set Metrics
acc_train <- (a_train + d_train) / sum(confMatTrain)
error_rate_train <- 1 - acc_train
sen_train <- d_train / (d_train + c_train)
sep_train <- a_train / (a_train + b_train)
precision_train <- d_train / (b_train + d_train)
F1_train <- (2 * precision_train * sen_train) / (precision_train + sen_train)
MCC_train <- (d_train * a_train - b_train * c_train) / sqrt((d_train + b_train) * (d_train + c_train) * (a_train + b_train) * (a_train + c_train))
auc_train <- roc(response = trainData$X, predictor = trainPredict)$auc# Validation Set Metrics
acc_valid <- (a_valid + d_valid) / sum(confMatValid)
error_rate_valid <- 1 - acc_valid
sen_valid <- d_valid / (d_valid + c_valid)
sep_valid <- a_valid / (a_valid + b_valid)
precision_valid <- d_valid / (b_valid + d_valid)
F1_valid <- (2 * precision_valid * sen_valid) / (precision_valid + sen_valid)
MCC_valid <- (d_valid * a_valid - b_valid * c_valid) / sqrt((d_valid + b_valid) * (d_valid + c_valid) * (a_valid + b_valid) * (a_valid + c_valid))
auc_valid <- roc(response = validData$X, predictor = validPredict)$auc# Print Metrics
cat("Training Metrics\n")
cat("Accuracy:", acc_train, "\n")
cat("Error Rate:", error_rate_train, "\n")
cat("Sensitivity:", sen_train, "\n")
cat("Specificity:", sep_train, "\n")
cat("Precision:", precision_train, "\n")
cat("F1 Score:", F1_train, "\n")
cat("MCC:", MCC_train, "\n")
cat("AUC:", auc_train, "\n\n")cat("Validation Metrics\n")
cat("Accuracy:", acc_valid, "\n")
cat("Error Rate:", error_rate_valid, "\n")
cat("Sensitivity:", sen_valid, "\n")
cat("Specificity:", sep_valid, "\n")
cat("Precision:", precision_valid, "\n")
cat("F1 Score:", F1_valid, "\n")
cat("MCC:", MCC_valid, "\n")
cat("AUC:", auc_valid, "\n")

在R语言中,caret包提供了一个通用的接口来训练KNN模型。使用caret的train函数来训练KNN模型时,可以调整多种参数来优化模型的性能:

基本参数:

①formula: 指定模型的公式,如Y ~ .,表示使用数据框中的所有其他变量来预测Y。

②data: 提供包含训练数据的数据框。

③method: 对于KNN模型,这个参数应设置为"knn"。

④preProcess: 预处理步骤,常用的包括标准化("scale")和中心化("center"),对于KNN这一步非常重要因为KNN依赖于变量的距离度量。

⑤trControl: 一个trainControl对象,定义了模型训练的各种控制策略,如交叉验证的类型和重复次数。

trainControl 函数的参数:

①method: 训练的方法,如交叉验证("cv"),重复交叉验证("repeatedcv"),留一交叉验证("LOOCV")等。

②number: 对于"cv"和"repeatedcv",这个参数定义了折数。

③repeats: 当使用"repeatedcv"时,定义重复的次数。

④search: 参数搜索方法,默认为"grid"。也可以设置为"random"进行随机搜索。

⑤savePredictions: 是否保存预测结果,通常用于后续分析。

模型性能调整参数:

使用KNN时,最关键的参数之一是邻居的数量(K值)。这可以通过train函数的以下参数来调整:

①tuneLength: 这个参数决定了在参数搜索中考虑多少个不同的K值。

②tuneGrid: 这是一个数据框,可以自定义K值的具体范围,例如expand.grid(k = c(1, 5, 10))

结果输出(默认参数):

三、KNN调参方法

如前所述,KNN的关键参数就是K值,所以可以对其进行一个暴力测试,比如取值1到10:

# 定义交叉验证的控制方法,启用网格搜索
trainControl <- trainControl(method = "cv", number = 10)
# 定义K值的网格搜索范围
tuneGrid <- expand.grid(k = 1:10)
# 在训练集上拟合KNN模型,指定网格搜索的K值
model <- train(X ~ ., data = trainData, method = "knn", trControl = trainControl,tuneGrid = tuneGrid, preProcess = "scale")
# 查看模型结果,找出最优的K值
print(model)

解读:

定义交叉验证的控制方法:使用trainControl函数设定交叉验证的详细参数。

定义K值的网格:使用tuneGrid参数在train函数中指定K值的范围。

拟合模型:使用train函数训练模型,同时应用预处理步骤(比如标准化数据),以确保每个特征在距离计算中具有等同的权重。

结果输出:

注意:用了caret包的train函数,并且通过网格搜索指定了一系列的参数(如K值的范围),那么这个函数会自动选择表现最好的参数配置来训练最终的模型。train函数的输出即是基于你提供的训练数据和参数搜索范围内表现最优的模型。因此,当你调用predict函数进行预测时,使用的就是这个最优化的模型。所以,下面的代码不变。

结果吧,跟之前的完全一样:

因为caret包对于KNN模型默认进行一系列的K值尝试,通常这个范围是1到最多的邻居数,但具体的最大K值依赖于caret的内部设置。在大多数情况下,它会尝试如1, 5, 7, 9等常用的K值。所以,我们默认参数的时候,其实软件自动给我们寻找最优K值了。可以用这个代码输出最有K值:

# Print the best K value used by the model
best_k <- model$bestTune$k
cat("The best K value found is:", best_k, "\n")

K值就是9,跟我们自行调参的一致。

那我们猛点,把K的范围设置的宽一些:

# 定义交叉验证的控制方法,启用网格搜索
trainControl <- trainControl(method = "cv", number = 10)
# 定义K值的网格搜索范围
tuneGrid <- expand.grid(k = 1:20)
# 在训练集上拟合KNN模型,指定网格搜索的K值
model <- train(X ~ ., data = trainData, method = "knn", trControl = trainControl,tuneGrid = tuneGrid, preProcess = "scale")
# 查看模型结果,找出最优的K值
print(model)

结果:

K=19,性能指标如下,似乎大同小异:

四、最后

数据嘛:

链接:https://pan.baidu.com/s/1rEf6JZyzA1ia5exoq5OF7g?pwd=x8xm

提取码:x8xm

这篇关于第100+12步 ChatGPT学习:R实现KNN分类的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1075127

相关文章

Redis客户端连接机制的实现方案

《Redis客户端连接机制的实现方案》本文主要介绍了Redis客户端连接机制的实现方案,包括事件驱动模型、非阻塞I/O处理、连接池应用及配置优化,具有一定的参考价值,感兴趣的可以了解一下... 目录1. Redis连接模型概述2. 连接建立过程详解2.1 连php接初始化流程2.2 关键配置参数3. 最大连

Python实现网格交易策略的过程

《Python实现网格交易策略的过程》本文讲解Python网格交易策略,利用ccxt获取加密货币数据及backtrader回测,通过设定网格节点,低买高卖获利,适合震荡行情,下面跟我一起看看我们的第一... 网格交易是一种经典的量化交易策略,其核心思想是在价格上下预设多个“网格”,当价格触发特定网格时执行买

python设置环境变量路径实现过程

《python设置环境变量路径实现过程》本文介绍设置Python路径的多种方法:临时设置(Windows用`set`,Linux/macOS用`export`)、永久设置(系统属性或shell配置文件... 目录设置python路径的方法临时设置环境变量(适用于当前会话)永久设置环境变量(Windows系统

Python对接支付宝支付之使用AliPay实现的详细操作指南

《Python对接支付宝支付之使用AliPay实现的详细操作指南》支付宝没有提供PythonSDK,但是强大的github就有提供python-alipay-sdk,封装里很多复杂操作,使用这个我们就... 目录一、引言二、准备工作2.1 支付宝开放平台入驻与应用创建2.2 密钥生成与配置2.3 安装ali

Spring Security 单点登录与自动登录机制的实现原理

《SpringSecurity单点登录与自动登录机制的实现原理》本文探讨SpringSecurity实现单点登录(SSO)与自动登录机制,涵盖JWT跨系统认证、RememberMe持久化Token... 目录一、核心概念解析1.1 单点登录(SSO)1.2 自动登录(Remember Me)二、代码分析三、

PyCharm中配置PyQt的实现步骤

《PyCharm中配置PyQt的实现步骤》PyCharm是JetBrains推出的一款强大的PythonIDE,结合PyQt可以进行pythion高效开发桌面GUI应用程序,本文就来介绍一下PyCha... 目录1. 安装China编程PyQt1.PyQt 核心组件2. 基础 PyQt 应用程序结构3. 使用 Q

Spring AI使用tool Calling和MCP的示例详解

《SpringAI使用toolCalling和MCP的示例详解》SpringAI1.0.0.M6引入ToolCalling与MCP协议,提升AI与工具交互的扩展性与标准化,支持信息检索、行动执行等... 目录深入探索 Spring AI聊天接口示例Function CallingMCPSTDIOSSE结束语

Python实现批量提取BLF文件时间戳

《Python实现批量提取BLF文件时间戳》BLF(BinaryLoggingFormat)作为Vector公司推出的CAN总线数据记录格式,被广泛用于存储车辆通信数据,本文将使用Python轻松提取... 目录一、为什么需要批量处理 BLF 文件二、核心代码解析:从文件遍历到数据导出1. 环境准备与依赖库

linux下shell脚本启动jar包实现过程

《linux下shell脚本启动jar包实现过程》确保APP_NAME和LOG_FILE位于目录内,首次启动前需手动创建log文件夹,否则报错,此为个人经验,供参考,欢迎支持脚本之家... 目录linux下shell脚本启动jar包样例1样例2总结linux下shell脚本启动jar包样例1#!/bin

go动态限制并发数量的实现示例

《go动态限制并发数量的实现示例》本文主要介绍了Go并发控制方法,通过带缓冲通道和第三方库实现并发数量限制,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面... 目录带有缓冲大小的通道使用第三方库其他控制并发的方法因为go从语言层面支持并发,所以面试百分百会问到