《实战AI大模型》深度解析:探索GPTs与AIGC的创新之旅

2024-06-19 10:20

本文主要是介绍《实战AI大模型》深度解析:探索GPTs与AIGC的创新之旅,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

😎 作者介绍:我是程序员洲洲,一个热爱写作的非著名程序员。CSDN全栈优质领域创作者、华为云博客社区云享专家、阿里云博客社区专家博主、前后端开发、人工智能研究生。公粽号:程序员洲洲。

🎈 本文专栏:本文收录于洲洲的《送书福利》系列专栏,该专栏福利多多,只需 关注+点赞+收藏 三连即可参与送书活动!欢迎大家关注本专栏~
专栏一键跳转

🤓 同时欢迎大家关注其他专栏,我将分享Web前后端开发、人工智能、机器学习、深度学习从0到1系列文章。

🌼 同时洲洲已经建立了程序员技术交流群,如果您感兴趣,可以私信我加入我的社群~社群中将不定时分享各类福利

🖥 随时欢迎您跟我沟通,一起交流,一起成长、进步!
点此即可获得联系方式~

本文目录
  • 一、大模型简介
  • 二、大模型领域
  • 三、著名的大模型
  • 四、推荐好书:《实战AI大模型》
  • 五、抽奖方式
  • 总结

一、大模型简介

这两年,大模型扮演着科技和人工智能领域中的关键角色,在各行各业中都已经如日中天,例如爆火的ChatGPT3.5、GPT4等等。

大模型是指在机器学习和深度学习领域中,具有大规模参数和复杂结构的模型。这类模型通常包含大量的神经元和层次结构,使得其能够处理高维度的输入数据,并在训练过程中学习到更为抽象和复杂的特征。以下是大模型的一些主要特征:

  • 深度(Depth): 大模型通常具有深层次的结构,包含多个隐藏层,使其能够从数据中学习到更复杂的表示和模式。
  • 宽度(Width): 大模型的宽度指的是网络中每一层中神经元的数量。较大的宽度有助于提高模型的表示能力,使其能够学到更为详细和具体的特征。
  • 参数数量:

大模型拥有巨大数量的参数,这些参数用于在训练过程中调整模型以适应输入数据。较多的参数提供了更大的拟合能力,但也带来了计算和存储的挑战。

  • 计算能力: 由于大模型通常需要处理大量的数据和参数,因此需要强大的计算能力来加速训练和推理过程。这促使了对于高性能硬件和并行计算的需求。

二、大模型领域

大模型在各个领域的广泛应用展示了其强大的学习和表示能力,这里洲洲给大家举例一些常见的领域:

  • 自然语言处理(NLP) 大模型在NLP领域中的应用引起了广泛关注。其中最为突出的例子之一是BERT(Bidirectional

Encoder Representations from Transformers),这是一种基于Transformer结构的预训练模型。BERT在理解上下文相关性和语义关系方面取得了巨大成功,成为众多NLP任务的重要基石,包括情感分析、问答系统、语言生成等。

  • 计算机视觉(CV) 在计算机视觉领域,大模型通过深度学习技术在图像识别、物体检测、图像生成等任务中展现出色表现。例如,大型卷积神经网络(CNNs)如ResNet和Inception在图像分类中取得了卓越的成绩。此外,生成对抗网络(GANs)等大模型也在图像生成和风格迁移等方面取得了显著进展。
  • 强化学习在强化学习领域,大模型的应用使得智能体能够更好地理解环境和制定复杂的决策。深度强化学习方法,如深度Q网络(DQN)和深度确定性策略梯度(DDPG),采用大型神经网络作为函数近似器,实现了在复杂环境中的高效学习。
  • 跨领域应用除了上述主要领域,大模型还在交叉领域中取得了卓越成就,例如医学影像分析、自动驾驶、金融预测等。大模型的通用性和适应性使其成为解决各种现实世界问题的有力工具。

三、著名的大模型

  • BERT(Bidirectional Encoder Representations from Transformers)

BERT 是一种预训练的自然语言处理模型,由Google提出。与传统的从左到右阅读文本的模型不同,BERT 通过同时考虑句子中左右两个方向的上下文,有效地捕捉到了双向的语义关系。BERT 在多项自然语言处理任务上刷新了记录,包括问答、文本分类、语言生成等。其模型结构基于Transformer,具有可扩展性,使其能够适应不同规模的任务。

  • GPT(Generative Pre-trained Transformer)

GPT 系列是由OpenAI提出的一系列基于Transformer结构的生成模型。GPT 利用预训练策略,通过大规模语料库的无监督学习,在生成文本的任务中表现卓越。其中,GPT-3是目前最大的模型,拥有数万亿的参数。GPT-3不仅在自然语言处理任务中表现出色,还在代码生成、图像生成等领域展现了强大的泛化能力,显示出大模型在多个任务上的通用性。

四、推荐好书:《实战AI大模型》

讲到这里,我给各位铁铁推荐一本经典好书:《实战AI大模型》。

《实战AI大模型》详细介绍了从基本概念到实践技巧的诸多内容,全方位解读AI大模型,循序渐进、由浅入深。书中配有二维码视频,使读者身临其境,迅速、深入地掌握各种经验和技巧。本书还附带了丰富的额外资源:开源工具和库、数据集和模型案例研究和实际应用、在线交流社区等。读者可以综合利用这些资源,获得更丰富的学习体验,加速自己的学习和成长。

《实战AI大模型》是一本旨在填补人工智能(AI)领域(特别是AI大模型)理论与实践之间鸿沟的实用手册。书中介绍了AI大模型的基础知识和关键技术,如Transformer、BERT、ALBERT、T5、GPT系列、InstructGPT、ChatGPT、GPT 4、PaLM和视觉模型等,并详细解释了这些模型的技术原理、实际应用以及高性能计算(HPC)技术的使用,如并行计算和内存优化。

同时,《实战AI大模型》还提供了实践案例,详细介绍了如何使用Colossal AI训练各种模型。无论是人工智能初学者还是经验丰富的实践者,都能从本书学到实用的知识和技能,从而在迅速发展的AI领域中找到适合自己的方向。

除此之外,本书还获得了许多业界大佬的鼎力推荐:

五、抽奖方式

抽奖送书老规矩(不点赞收藏中奖无效):注意记得关注博主及时获取中奖通知。


1. 点赞+收藏 文章
2. 评论区留言:我要成为架构师(留言才能进入奖池,每人最多留言三条)
3. 2024年1月10日-周3晚八点随机抽奖3人
4. 京东自营购买链接:https://item.jd.com/14281522.html

总结

Hello,各位铁铁好,洲洲已经建立了CSDN技术交流群,如果你很感兴趣,可以私信我加入我的社群。

📝社群中不定时会有很多活动,例如每周都会包邮免费送一些技术书籍及精美礼品、学习资料分享、大厂面经分享、技术讨论、行业大佬创业杂谈等等。

📝社群方向很多,相关领域有Web全栈(前后端)、人工智能、机器学习、自媒体变现、前沿科技文章分享、论文精读等等。

📝不管你是多新手的小白,都欢迎你加入社群中讨论、聊天、分享,加速助力你成为下一个技术大佬!也随时欢迎您跟我沟通,一起交流,一起成长。变现、进步、技术、资料、项目、你想要的这里都会有

📝网络的风口只会越来越大,风浪越大,鱼越贵!欢迎您加入社群~一个人可以或许可以走的很快,但一群人将走的更远!

📝关注我的公众号(与CSDN同ID:程序员洲洲)可以获得一份Java 10万字面试宝典及相关资料!~

📝想都是问题,做都是答案!行动起来吧!欢迎评论区or后台与我沟通交流,也欢迎您点击下方的链接直接加入到我的交流社群!~
跳转链接社区~

这篇关于《实战AI大模型》深度解析:探索GPTs与AIGC的创新之旅的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1074756

相关文章

线上Java OOM问题定位与解决方案超详细解析

《线上JavaOOM问题定位与解决方案超详细解析》OOM是JVM抛出的错误,表示内存分配失败,:本文主要介绍线上JavaOOM问题定位与解决方案的相关资料,文中通过代码介绍的非常详细,需要的朋... 目录一、OOM问题核心认知1.1 OOM定义与技术定位1.2 OOM常见类型及技术特征二、OOM问题定位工具

MyBatis分页查询实战案例完整流程

《MyBatis分页查询实战案例完整流程》MyBatis是一个强大的Java持久层框架,支持自定义SQL和高级映射,本案例以员工工资信息管理为例,详细讲解如何在IDEA中使用MyBatis结合Page... 目录1. MyBATis框架简介2. 分页查询原理与应用场景2.1 分页查询的基本原理2.1.1 分

使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解

《使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解》本文详细介绍了如何使用Python通过ncmdump工具批量将.ncm音频转换为.mp3的步骤,包括安装、配置ffmpeg环... 目录1. 前言2. 安装 ncmdump3. 实现 .ncm 转 .mp34. 执行过程5. 执行结

SpringBoot 多环境开发实战(从配置、管理与控制)

《SpringBoot多环境开发实战(从配置、管理与控制)》本文详解SpringBoot多环境配置,涵盖单文件YAML、多文件模式、MavenProfile分组及激活策略,通过优先级控制灵活切换环境... 目录一、多环境开发基础(单文件 YAML 版)(一)配置原理与优势(二)实操示例二、多环境开发多文件版

深度解析Python中递归下降解析器的原理与实现

《深度解析Python中递归下降解析器的原理与实现》在编译器设计、配置文件处理和数据转换领域,递归下降解析器是最常用且最直观的解析技术,本文将详细介绍递归下降解析器的原理与实现,感兴趣的小伙伴可以跟随... 目录引言:解析器的核心价值一、递归下降解析器基础1.1 核心概念解析1.2 基本架构二、简单算术表达

Three.js构建一个 3D 商品展示空间完整实战项目

《Three.js构建一个3D商品展示空间完整实战项目》Three.js是一个强大的JavaScript库,专用于在Web浏览器中创建3D图形,:本文主要介绍Three.js构建一个3D商品展... 目录引言项目核心技术1. 项目架构与资源组织2. 多模型切换、交互热点绑定3. 移动端适配与帧率优化4. 可

深度解析Java @Serial 注解及常见错误案例

《深度解析Java@Serial注解及常见错误案例》Java14引入@Serial注解,用于编译时校验序列化成员,替代传统方式解决运行时错误,适用于Serializable类的方法/字段,需注意签... 目录Java @Serial 注解深度解析1. 注解本质2. 核心作用(1) 主要用途(2) 适用位置3

Java MCP 的鉴权深度解析

《JavaMCP的鉴权深度解析》文章介绍JavaMCP鉴权的实现方式,指出客户端可通过queryString、header或env传递鉴权信息,服务器端支持工具单独鉴权、过滤器集中鉴权及启动时鉴权... 目录一、MCP Client 侧(负责传递,比较简单)(1)常见的 mcpServers json 配置

从原理到实战解析Java Stream 的并行流性能优化

《从原理到实战解析JavaStream的并行流性能优化》本文给大家介绍JavaStream的并行流性能优化:从原理到实战的全攻略,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的... 目录一、并行流的核心原理与适用场景二、性能优化的核心策略1. 合理设置并行度:打破默认阈值2. 避免装箱

Maven中生命周期深度解析与实战指南

《Maven中生命周期深度解析与实战指南》这篇文章主要为大家详细介绍了Maven生命周期实战指南,包含核心概念、阶段详解、SpringBoot特化场景及企业级实践建议,希望对大家有一定的帮助... 目录一、Maven 生命周期哲学二、default生命周期核心阶段详解(高频使用)三、clean生命周期核心阶