【数据结构C++】表达式求值(多位数)课程设计

2024-06-19 09:44

本文主要是介绍【数据结构C++】表达式求值(多位数)课程设计,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!


📚博客主页:Zhui_Yi_
🔍:上期回顾:图

❤️感谢大家点赞👍🏻收藏⭐评论✍🏻,您的三连就是我持续更新的动力❤️
🎇追当今朝天骄,忆顾往昔豪杰。
在这里插入图片描述

文章目录

  • 前言
    • 问题描述
    • 基 本 要 求
    • 实 现 提 示
  • 一、摘要以及引言
    • 摘要
    • 引言
  • 二、系统设计
  • 三、关键算法与实现
    • 1.运算符处理
    • 2.表达式求值流程
  • 四、程序实现
  • 五、具体代码
    • 1.定义结构以及初始化
    • 2.简单的链栈操作
      • 判空
      • 入栈
      • 出栈
      • 取栈顶元素
      • 判断运算符是否有效
      • 将运算符转换
      • 判断运算符优先级
      • 进行运算
      • 进行运算
      • 完整代码
  • 总结
  • 切记切记,我给出代码缺少对括号匹配的信息,但代码是能直接运行的,需要你们自己写出来。

前言

本期呢,给大家带来的课程设计,简单给大家说一哈要求:

问题描述

任 何 一 个 表 达 式 都 是 由 操 作 数 (operand)、 运 算 符 (operator)和 界 限 符
(delimiter)组 成 的 。 其 中 , 操 作 数 可 以 是 常 量 , 也 可 以 是 变 量 ; 运 算 符 可 以 是 算
术 运 算 符 、关 系 运 算 符 和 逻 位 算 符 ;界 限 符 是 左 、右 括 号 和 标 志 表 达 式 结 束 的 结 束 符。
在 本 课 程 设 计 中 ,仅 讨 论 简 单 算 术 表 达 式 的 求 值 问 题 , 约 定 表 达 式 中 只 包 含 加 、减 、 乘 、 除 4 种运算, 所 有 的 运 算 对 象 均 为 简 单 变 量 , 表 达 式 的 结 束 符 为 “ =”。
要 求以 字 符 序 列 的 形 式 从 终 端 输 入 语 法 正 确 、不 含 变 量 的 整 数 表 达 式 。 利 用 已 知 的 运 算 符 优 先 关 系 , 实 现 对 算 术 表 达 式 的 求 值 。

基 本 要 求

这 是 一 个 利 用 栈 结 构 完 成 的 程 序 。为 了 实 现 运 算 符 优 先 算 法 ,需 使 用 两 个 工 作 栈 ,一 个 称 为 运 算 符 栈 (OPTR), 用 来 寄 存 运 算 符 ; 另 一 个 称 为 操 作 数 栈 (OPND), 用 来
寄 存 操 作 数 或 运 算 结 果 。 基 本 要 求 如 下 : (1) 表 达 式 中 只 包 含 加 、 减 、 乘 、 除 4
种 运 算 , 应 按 优 先 级 进 行 运 算 。
(2) 表 达 式 中 不 包 含 变 量 。
(3) 操 作 数 应 为 整 数
(4) 操 作 数 应 包 含 1 位 数 , 2 位 数 , 3 位 数 等 不 同 数 据 。
(5) 初 始 状态: 操作数栈(OPND)为空栈,表达式结束符“ =” 为 运 算 符 栈 (OPTR)的 栈 底 元 素 。

实 现 提 示

假 设 算 术 表 达 式 Expression 内 可 以 含 有 常 量 (0~9)和 二 元 运 算 符(+, -, *, /)。 实
现 以 下 操 作 : (1) ReadExpre(E): 对 以字符序列的形式输入语法正确的 中 缀表 达 式 并 构 造 表 达 式 E。
(2) EValuation(): 对 算 术 表 达 式 E 求 值 。 (3) Compare(c1,c2): 比 较 运 算 符
优 先 级 。
(4) Operate(a,optr,b):根 据 运 算 符 optr 进 行 操 作 数 a 和 b 的 运算 。
(5) 栈 的 相 关 操 作 ( 必 须 自 己 实 现 , 不 可 使 用 现 成 的 模 板 类 )。

一、摘要以及引言

摘要

本文介绍了一个利用链栈数据结构实现的简单中缀表达式求值程序。该程序能够接收用户输入的数学表达式,支持加减乘除四则运算及括号,以等号“=”作为输入结束标志,计算表达式的值并输出结果。本文详细阐述了程序的设计思路、核心算法及实现细节,旨在为初学者提供一个学习链栈应用和表达式求值原理的实践案例。

引言

在计算机科学领域,表达式求值是一项基本而重要的任务,广泛应用于编译器设计、计算器开发等多个场景。其中,中缀表达式是最自然的数学表达形式,但直接计算中缀表达式较为复杂。本文采用栈这一数据结构,设计并实现了一个程序,能够高效地将中缀表达式转换为后缀表达式(逆波兰表示法),进而计算其值。

二、系统设计

  • 本系统主要由以下几个部分组成:
  • 链栈结构:定义了两个链栈,OPTD用于存储操作数,OPTR用于存储运算符。
    表达式解析与计算:程序首先读取用户输入的中缀表达式,然后根据运算符优先级和括号规则,将表达式转换为便于计算的形式,并最终求得结果。
    用户交互:提供友好界面,用户输入表达式,以等号结束,程序显示计算结果,并询问是否继续进行新的计算。

三、关键算法与实现

1.运算符处理

  • 运算符入栈规则:程序通过Precede函数判断新读入的运算符与栈顶运算符的优先级,优先级较低的运算符先出栈计算。
    括号处理:遇到左括号入栈,遇到右括号则弹出栈顶运算符直到遇到左括号,处理括号内表达式。
    等号处理:等号既是输入结束标志,也作为特殊运算符处理,确保表达式正确结束。

2.表达式求值流程

  1. 初始化:初始化两个链栈。
  2. 读取输入:逐字符读取用户输入的表达式。
  3. 字符处理:对每个字符判断是否为运算符、数字或结束符号,进行相应处理。
  4. 运算符优先级判定与操作数计算:使用栈结构辅助计算,遵循运算符优先级规则。
  5. 输出结果:计算完成后,输出表达式的计算结果。

四、程序实现

本程序使用C++语言实现,主要采用了结构体定义链栈,通过自定义的链栈操作函数实现了数据的入栈、出栈等操作。calculate函数为核心,负责解析和计算表达式。通过一系列条件判断和循环结构,实现了对中缀表达式的有效处理。此外,程序还包含用户交互环节,提高了用户体验。

五、具体代码

1.定义结构以及初始化

// 链栈节点结构
struct Node {double data;Node* next;
};// 链栈结构
struct LinkStack {Node* top;int size;
};// 初始化链栈
LinkStack* InitLinkStack() {LinkStack* stack = new LinkStack;stack->top = nullptr;stack->size = 0;return stack;
}

2.简单的链栈操作

判空

bool IsEmpty(LinkStack* stack) {return stack->top == nullptr;
}

入栈

// 入栈操作
void Push(LinkStack* stack, double value) {Node* node = new Node;node->data = value;node->next = stack->top;stack->top = node;stack->size++;
}

出栈

double Pop(LinkStack* stack) {if (IsEmpty(stack)) {throw runtime_error("栈是空的!");}double value = stack->top->data;Node* temp = stack->top;stack->top = stack->top->next;delete temp;stack->size--;return value;
}

取栈顶元素

// 获取栈顶元素
double GetTop(LinkStack* stack) {if (IsEmpty(stack)) {throw runtime_error("栈是空的!");}return stack->top->data;
}

判断运算符是否有效

运算符分为+、-、*、/、=,即:

bool In(char c) {if (c == '(' || c == ')' || c == '+' || c == '-' || c == '*' || c == '/' || c == '=')return true;return false;
}

将运算符转换

int intdata(char c) {switch (c) {case '+': return 0;case '-': return 1;case '*': return 2;case '/': return 3;case '(': return 4;case ')': return 5;case '=': return 6; default: break;}
}

判断运算符优先级

在这里插入图片描述
根据这张图片进行建立二维数组。

char Precede(char c1, char c2) {int a, b;char table[7][7] = {'>','>','<','<','<','>','>','>','>','<','<','<','>','>','>','>','>','>','<','>','>','>','>','>','>','<','>','>','<','<','<','<','<','=','0','>','>','>','>','0','>','>','<','<','<','<','<','0','=',};a = intdata(c1); b = intdata(c2);return table[a][b];
}

进行运算

double operate(double a, char c, double b) {if (c == '+') return (a + b);else if (c == '-') return (a - b);else if (c == '*') return (a * b);else if (c == '/') {if (b == 0) return (flag = 1);else return (a / b);}
}

进行运算

double calculate() {char ch, tempc;double x, y, temp, count = 0;Push(OPTR, '='); cin >> ch;while (ch != '=' || GetTop(OPTR) != '=') { if (!In(ch)) {if (count != 0) {temp = GetTop(OPTD); Pop(OPTD);temp = (double)(temp * 10 + ch - '0');Push(OPTD, temp);cin >> ch;}else {temp = (double)(ch - '0');Push(OPTD, temp);count++;cin >> ch;}}else {count = 0;switch (Precede(GetTop(OPTR), ch)) {case '<':Push(OPTR, ch);cin >> ch;break;case '>':tempc = GetTop(OPTR); Pop(OPTR);y = GetTop(OPTD); Pop(OPTD);x = GetTop(OPTD); Pop(OPTD);Push(OPTD, operate(x, tempc, y));break;case '=':tempc = GetTop(OPTR); Pop(OPTR);cin >> ch;break;default:break;}}}return GetTop(OPTD);
}

完整代码

#include <iostream>
#include <string>using namespace std;// 链栈节点结构
struct Node {double data;Node* next;
};// 链栈结构
struct LinkStack {Node* top;int size;
};// 初始化链栈
LinkStack* InitLinkStack() {LinkStack* stack = new LinkStack;stack->top = nullptr;stack->size = 0;return stack;
}// 判断栈是否为空
bool IsEmpty(LinkStack* stack) {return stack->top == nullptr;
}// 入栈操作
void Push(LinkStack* stack, double value) {Node* node = new Node;node->data = value;node->next = stack->top;stack->top = node;stack->size++;
}// 出栈操作
double Pop(LinkStack* stack) {if (IsEmpty(stack)) {throw runtime_error("栈是空的!");}double value = stack->top->data;Node* temp = stack->top;stack->top = stack->top->next;delete temp;stack->size--;return value;
}// 获取栈顶元素
double GetTop(LinkStack* stack) {if (IsEmpty(stack)) {throw runtime_error("栈是空的!");}return stack->top->data;
}// 全局链栈
LinkStack* OPTD = InitLinkStack();
LinkStack* OPTR = InitLinkStack();
int flag = 0;// 判断字符是否为运算符
bool In(char c) {if (c == '(' || c == ')' || c == '+' || c == '-' || c == '*' || c == '/' || c == '=')return true;return false;
}// 将运算符转换为序号
int intdata(char c) {switch (c) {case '+': return 0;case '-': return 1;case '*': return 2;case '/': return 3;case '(': return 4;case ')': return 5;case '=': return 6; // 修改这里,添加'='的序号default: break;}
}// 判定运算符优先级
char Precede(char c1, char c2) {int a, b;char table[7][7] = {'>','>','<','<','<','>','>','>','>','<','<','<','>','>','>','>','>','>','<','>','>','>','>','>','>','<','>','>','<','<','<','<','<','=','0','>','>','>','>','0','>','>','<','<','<','<','<','0','=',};a = intdata(c1); b = intdata(c2);return table[a][b];
}// 执行运算
double operate(double a, char c, double b) {if (c == '+') return (a + b);else if (c == '-') return (a - b);else if (c == '*') return (a * b);else if (c == '/') {if (b == 0) return (flag = 1);else return (a / b);}
}// 表达式求值
double calculate() {char ch, tempc;double x, y, temp, count = 0;Push(OPTR, '='); cin >> ch;while (ch != '=' || GetTop(OPTR) != '=') { if (!In(ch)) {if (count != 0) {temp = GetTop(OPTD); Pop(OPTD);temp = (double)(temp * 10 + ch - '0');Push(OPTD, temp);cin >> ch;}else {temp = (double)(ch - '0');Push(OPTD, temp);count++;cin >> ch;}}else {count = 0;switch (Precede(GetTop(OPTR), ch)) {case '<':Push(OPTR, ch);cin >> ch;break;case '>':tempc = GetTop(OPTR); Pop(OPTR);y = GetTop(OPTD); Pop(OPTD);x = GetTop(OPTD); Pop(OPTD);Push(OPTD, operate(x, tempc, y));break;case '=':tempc = GetTop(OPTR); Pop(OPTR);cin >> ch;break;default:break;}}}return GetTop(OPTD);
}// 菜单函数
void menu() {puts("\n=========================\n");puts("       表达式求值");puts("\n=========================\n");
}// 主函数
int main() {menu();double answer, trueValue = 1;while (trueValue) {cout << "\n请输入表达式,以等号(=)结束:"; answer = calculate();if (flag == 1) {cout << "分母不能为0哦!" << endl;flag = 0;}elsecout << "表达式的值为:" << answer << endl;cout << "按0可结束程序,继续请按1:";cin >> trueValue;}return 0;
}

在这里插入图片描述

总结

本文通过设计链栈数据结构和实现相应的算法,成功开发了一个能够处理中缀表达式的程序。该程序不仅能够正确计算表达式的值,还具备良好的用户交互体验,适合教学和初步编程实践。未来的工作可以考虑扩展程序功能,支持更多类型的运算符和更复杂的表达式结构。

切记切记,我给出代码缺少对括号匹配的信息,但代码是能直接运行的,需要你们自己写出来。

这篇关于【数据结构C++】表达式求值(多位数)课程设计的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/1074676

相关文章

C++中全局变量和局部变量的区别

《C++中全局变量和局部变量的区别》本文主要介绍了C++中全局变量和局部变量的区别,全局变量和局部变量在作用域和生命周期上有显著的区别,下面就来介绍一下,感兴趣的可以了解一下... 目录一、全局变量定义生命周期存储位置代码示例输出二、局部变量定义生命周期存储位置代码示例输出三、全局变量和局部变量的区别作用域

C++中assign函数的使用

《C++中assign函数的使用》在C++标准模板库中,std::list等容器都提供了assign成员函数,它比操作符更灵活,支持多种初始化方式,下面就来介绍一下assign的用法,具有一定的参考价... 目录​1.assign的基本功能​​语法​2. 具体用法示例​​​(1) 填充n个相同值​​(2)

c++ 类成员变量默认初始值的实现

《c++类成员变量默认初始值的实现》本文主要介绍了c++类成员变量默认初始值,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录C++类成员变量初始化c++类的变量的初始化在C++中,如果使用类成员变量时未给定其初始值,那么它将被

C++中NULL与nullptr的区别小结

《C++中NULL与nullptr的区别小结》本文介绍了C++编程中NULL与nullptr的区别,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编... 目录C++98空值——NULLC++11空值——nullptr区别对比示例 C++98空值——NUL

C++ Log4cpp跨平台日志库的使用小结

《C++Log4cpp跨平台日志库的使用小结》Log4cpp是c++类库,本文详细介绍了C++日志库log4cpp的使用方法,及设置日志输出格式和优先级,具有一定的参考价值,感兴趣的可以了解一下... 目录一、介绍1. log4cpp的日志方式2.设置日志输出的格式3. 设置日志的输出优先级二、Window

从入门到精通C++11 <chrono> 库特性

《从入门到精通C++11<chrono>库特性》chrono库是C++11中一个非常强大和实用的库,它为时间处理提供了丰富的功能和类型安全的接口,通过本文的介绍,我们了解了chrono库的基本概念... 目录一、引言1.1 为什么需要<chrono>库1.2<chrono>库的基本概念二、时间段(Durat

C++20管道运算符的实现示例

《C++20管道运算符的实现示例》本文简要介绍C++20管道运算符的使用与实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录标准库的管道运算符使用自己实现类似的管道运算符我们不打算介绍太多,因为它实际属于c++20最为重要的

Visual Studio 2022 编译C++20代码的图文步骤

《VisualStudio2022编译C++20代码的图文步骤》在VisualStudio中启用C++20import功能,需设置语言标准为ISOC++20,开启扫描源查找模块依赖及实验性标... 默认创建Visual Studio桌面控制台项目代码包含C++20的import方法。右键项目的属性:

c++中的set容器介绍及操作大全

《c++中的set容器介绍及操作大全》:本文主要介绍c++中的set容器介绍及操作大全,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录​​一、核心特性​​️ ​​二、基本操作​​​​1. 初始化与赋值​​​​2. 增删查操作​​​​3. 遍历方

解析C++11 static_assert及与Boost库的关联从入门到精通

《解析C++11static_assert及与Boost库的关联从入门到精通》static_assert是C++中强大的编译时验证工具,它能够在编译阶段拦截不符合预期的类型或值,增强代码的健壮性,通... 目录一、背景知识:传统断言方法的局限性1.1 assert宏1.2 #error指令1.3 第三方解决