python --- 二分图匈牙利算法和KM算法

2024-06-19 09:32

本文主要是介绍python --- 二分图匈牙利算法和KM算法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

基础概念

关于匈牙利算法的基础概念就不作具体描述了,不清楚的可以自己搜索相关知识
主要需要了解的知识点

  • 二分图
  • 匹配:最大匹配,完美匹配
  • 路径:交错路径,增广路径

算法核心:通过不断寻找增广路径找到最大匹配的道路

算法实现

1. 使用线性规划库scipy

默认取最小组合,设置maximize为True时取最大组合

import numpy as np
from scipy.optimize import linear_sum_assignmenta = np.array([[84, 65, 3, 34], [65, 56, 23, 35], [63, 18, 35, 12]])
row, col = linear_sum_assignment(a)
print("行坐标:", row, "列坐标:", col, "最小组合:", a[row, col])
row, col = linear_sum_assignment(a, True)	
print("行坐标:", row, "列坐标:", col, "最大组合:", a[row, col])

输出

行坐标: [0 1 2] 列坐标: [2 3 1] 最小组合: [ 3 35 18]
行坐标: [0 1 2] 列坐标: [0 1 2] 最大组合: [84 56 35]
2. 使用munkres库

源码:https://github.com/bmc/munkres
文档:http://software.clapper.org/munkres/

目前该库已经可以使用pip install munkres安装

默认是取最小组合,需要取最大组合则使用make_cost_matrix转换数据矩阵

import numpy as np
from munkres import Munkres, make_cost_matrix, DISALLOWEDa = np.array([[84, 65, 3, 34], [65, 56, 23, 35], [63, 18, 35, 12]])
b = make_cost_matrix(a, lambda cost: (a.max() - cost) if (cost != DISALLOWED) else DISALLOWED)mk = Munkres()
# 最小组合
indexes = mk.compute(a.copy()) # 会改变输入的源数据
print("最小组合:",indexes, a[[i[0] for i in indexes], [i[1] for i in indexes]])
# 最大组合
indexes = mk.compute(b)
print("最大组合:", indexes, a[[i[0] for i in indexes], [i[1] for i in indexes]])

输出

最小组合:[(0, 2), (1, 3), (2, 1)] [ 3 35 18]
最大组合:[(0, 0), (1, 1), (2, 2)] [84 56 35]

注意使用np.array输入,mk.compute会改变输入的源数据

3. KM算法python实现

基本思想:通过引入顶标,将最优权值匹配转化为最大匹配问题
参考:
https://blog.csdn.net/u010510549/article/details/91350549
https://www.cnblogs.com/fzl194/p/8848061.html

实现了矩阵的自动补0和最大最小组合计算

import numpy as npclass KM:def __init__(self):self.matrix = Noneself.max_weight = 0self.row, self.col = 0, 0  # 源数据行列self.size = 0   # 方阵大小self.lx = None  # 左侧权值self.ly = None  # 右侧权值self.match = None   # 匹配结果self.slack = None   # 边权和顶标最小的差值self.visx = None    # 左侧是否加入增广路self.visy = None    # 右侧是否加入增广路# 调整数据def pad_matrix(self, min):if min:max = self.matrix.max() + 1self.matrix = max-self.matrixif self.row > self.col:   # 行大于列,添加列self.matrix = np.c_[self.matrix, np.array([[0] * (self.row - self.col)] * self.row)]elif self.col > self.row:  # 列大于行,添加行self.matrix = np.r_[self.matrix, np.array([[0] * self.col] * (self.col - self.row))]def reset_slack(self):self.slack.fill(self.max_weight + 1)def reset_vis(self):self.visx.fill(False)self.visy.fill(False)def find_path(self, x):self.visx[x] = Truefor y in range(self.size):if self.visy[y]:continuetmp_delta = self.lx[x] + self.ly[y] - self.matrix[x][y]if tmp_delta == 0:self.visy[y] = Trueif self.match[y] == -1 or self.find_path(self.match[y]):self.match[y] = xreturn Trueelif self.slack[y] > tmp_delta:self.slack[y] = tmp_deltareturn Falsedef km_cal(self):for x in range(self.size):self.reset_slack()while True:self.reset_vis()if self.find_path(x):breakelse:  # update slackdelta = self.slack[~self.visy].min()self.lx[self.visx] -= deltaself.ly[self.visy] += deltaself.slack[~self.visy] -= deltadef compute(self, datas, min=False):""":param datas: 权值矩阵:param min: 是否取最小组合,默认最大组合:return: 输出行对应的结果位置"""self.matrix = np.array(datas) if not isinstance(datas, np.ndarray) else datasself.max_weight = self.matrix.sum()self.row, self.col = self.matrix.shape  # 源数据行列self.size = max(self.row, self.col)self.pad_matrix(min)print(self.matrix)self.lx = self.matrix.max(1)self.ly = np.array([0] * self.size, dtype=int)self.match = np.array([-1] * self.size, dtype=int)self.slack = np.array([0] * self.size, dtype=int)self.visx = np.array([False] * self.size, dtype=bool)self.visy = np.array([False] * self.size, dtype=bool)self.km_cal()match = [i[0] for i in sorted(enumerate(self.match), key=lambda x: x[1])]result = []for i in range(self.row):result.append((i, match[i] if match[i] < self.col else -1))  # 没有对应的值给-1return resultif __name__ == '__main__':a = np.array([[84, 65, 3, 34], [65, 56, 23, 35], [63, 18, 35, 12]])# a = np.array([[84, 65], [3, 34], [63, 18], [35, 12]])km = KM()min_ = km.compute(a.copy(), True)print("最小组合:", min_, a[[i[0] for i in min_], [i[1] for i in min_]])max_ = km.compute(a.copy())print("最大组合:", max_, a[[i[0] for i in max_], [i[1] for i in max_]])

输出:

最小组合: [(0, 2), (1, 3), (2, 1)] [ 3 35 18]
最大组合: [(0, 0), (1, 1), (2, 2)] [84 56 35]

这篇关于python --- 二分图匈牙利算法和KM算法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1074650

相关文章

Django开发时如何避免频繁发送短信验证码(python图文代码)

《Django开发时如何避免频繁发送短信验证码(python图文代码)》Django开发时,为防止频繁发送验证码,后端需用Redis限制请求频率,结合管道技术提升效率,通过生产者消费者模式解耦业务逻辑... 目录避免频繁发送 验证码1. www.chinasem.cn避免频繁发送 验证码逻辑分析2. 避免频繁

精选20个好玩又实用的的Python实战项目(有图文代码)

《精选20个好玩又实用的的Python实战项目(有图文代码)》文章介绍了20个实用Python项目,涵盖游戏开发、工具应用、图像处理、机器学习等,使用Tkinter、PIL、OpenCV、Kivy等库... 目录① 猜字游戏② 闹钟③ 骰子模拟器④ 二维码⑤ 语言检测⑥ 加密和解密⑦ URL缩短⑧ 音乐播放

python panda库从基础到高级操作分析

《pythonpanda库从基础到高级操作分析》本文介绍了Pandas库的核心功能,包括处理结构化数据的Series和DataFrame数据结构,数据读取、清洗、分组聚合、合并、时间序列分析及大数据... 目录1. Pandas 概述2. 基本操作:数据读取与查看3. 索引操作:精准定位数据4. Group

Python pandas库自学超详细教程

《Pythonpandas库自学超详细教程》文章介绍了Pandas库的基本功能、安装方法及核心操作,涵盖数据导入(CSV/Excel等)、数据结构(Series、DataFrame)、数据清洗、转换... 目录一、什么是Pandas库(1)、Pandas 应用(2)、Pandas 功能(3)、数据结构二、安

Python使用Tenacity一行代码实现自动重试详解

《Python使用Tenacity一行代码实现自动重试详解》tenacity是一个专为Python设计的通用重试库,它的核心理念就是用简单、清晰的方式,为任何可能失败的操作添加重试能力,下面我们就来看... 目录一切始于一个简单的 API 调用Tenacity 入门:一行代码实现优雅重试精细控制:让重试按我

Python安装Pandas库的两种方法

《Python安装Pandas库的两种方法》本文介绍了三种安装PythonPandas库的方法,通过cmd命令行安装并解决版本冲突,手动下载whl文件安装,更换国内镜像源加速下载,最后建议用pipli... 目录方法一:cmd命令行执行pip install pandas方法二:找到pandas下载库,然后

Python实现网格交易策略的过程

《Python实现网格交易策略的过程》本文讲解Python网格交易策略,利用ccxt获取加密货币数据及backtrader回测,通过设定网格节点,低买高卖获利,适合震荡行情,下面跟我一起看看我们的第一... 网格交易是一种经典的量化交易策略,其核心思想是在价格上下预设多个“网格”,当价格触发特定网格时执行买

Python标准库之数据压缩和存档的应用详解

《Python标准库之数据压缩和存档的应用详解》在数据处理与存储领域,压缩和存档是提升效率的关键技术,Python标准库提供了一套完整的工具链,下面小编就来和大家简单介绍一下吧... 目录一、核心模块架构与设计哲学二、关键模块深度解析1.tarfile:专业级归档工具2.zipfile:跨平台归档首选3.

使用Python构建智能BAT文件生成器的完美解决方案

《使用Python构建智能BAT文件生成器的完美解决方案》这篇文章主要为大家详细介绍了如何使用wxPython构建一个智能的BAT文件生成器,它不仅能够为Python脚本生成启动脚本,还提供了完整的文... 目录引言运行效果图项目背景与需求分析核心需求技术选型核心功能实现1. 数据库设计2. 界面布局设计3

Python进行JSON和Excel文件转换处理指南

《Python进行JSON和Excel文件转换处理指南》在数据交换与系统集成中,JSON与Excel是两种极为常见的数据格式,本文将介绍如何使用Python实现将JSON转换为格式化的Excel文件,... 目录将 jsON 导入为格式化 Excel将 Excel 导出为结构化 JSON处理嵌套 JSON: