python --- 二分图匈牙利算法和KM算法

2024-06-19 09:32

本文主要是介绍python --- 二分图匈牙利算法和KM算法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

基础概念

关于匈牙利算法的基础概念就不作具体描述了,不清楚的可以自己搜索相关知识
主要需要了解的知识点

  • 二分图
  • 匹配:最大匹配,完美匹配
  • 路径:交错路径,增广路径

算法核心:通过不断寻找增广路径找到最大匹配的道路

算法实现

1. 使用线性规划库scipy

默认取最小组合,设置maximize为True时取最大组合

import numpy as np
from scipy.optimize import linear_sum_assignmenta = np.array([[84, 65, 3, 34], [65, 56, 23, 35], [63, 18, 35, 12]])
row, col = linear_sum_assignment(a)
print("行坐标:", row, "列坐标:", col, "最小组合:", a[row, col])
row, col = linear_sum_assignment(a, True)	
print("行坐标:", row, "列坐标:", col, "最大组合:", a[row, col])

输出

行坐标: [0 1 2] 列坐标: [2 3 1] 最小组合: [ 3 35 18]
行坐标: [0 1 2] 列坐标: [0 1 2] 最大组合: [84 56 35]
2. 使用munkres库

源码:https://github.com/bmc/munkres
文档:http://software.clapper.org/munkres/

目前该库已经可以使用pip install munkres安装

默认是取最小组合,需要取最大组合则使用make_cost_matrix转换数据矩阵

import numpy as np
from munkres import Munkres, make_cost_matrix, DISALLOWEDa = np.array([[84, 65, 3, 34], [65, 56, 23, 35], [63, 18, 35, 12]])
b = make_cost_matrix(a, lambda cost: (a.max() - cost) if (cost != DISALLOWED) else DISALLOWED)mk = Munkres()
# 最小组合
indexes = mk.compute(a.copy()) # 会改变输入的源数据
print("最小组合:",indexes, a[[i[0] for i in indexes], [i[1] for i in indexes]])
# 最大组合
indexes = mk.compute(b)
print("最大组合:", indexes, a[[i[0] for i in indexes], [i[1] for i in indexes]])

输出

最小组合:[(0, 2), (1, 3), (2, 1)] [ 3 35 18]
最大组合:[(0, 0), (1, 1), (2, 2)] [84 56 35]

注意使用np.array输入,mk.compute会改变输入的源数据

3. KM算法python实现

基本思想:通过引入顶标,将最优权值匹配转化为最大匹配问题
参考:
https://blog.csdn.net/u010510549/article/details/91350549
https://www.cnblogs.com/fzl194/p/8848061.html

实现了矩阵的自动补0和最大最小组合计算

import numpy as npclass KM:def __init__(self):self.matrix = Noneself.max_weight = 0self.row, self.col = 0, 0  # 源数据行列self.size = 0   # 方阵大小self.lx = None  # 左侧权值self.ly = None  # 右侧权值self.match = None   # 匹配结果self.slack = None   # 边权和顶标最小的差值self.visx = None    # 左侧是否加入增广路self.visy = None    # 右侧是否加入增广路# 调整数据def pad_matrix(self, min):if min:max = self.matrix.max() + 1self.matrix = max-self.matrixif self.row > self.col:   # 行大于列,添加列self.matrix = np.c_[self.matrix, np.array([[0] * (self.row - self.col)] * self.row)]elif self.col > self.row:  # 列大于行,添加行self.matrix = np.r_[self.matrix, np.array([[0] * self.col] * (self.col - self.row))]def reset_slack(self):self.slack.fill(self.max_weight + 1)def reset_vis(self):self.visx.fill(False)self.visy.fill(False)def find_path(self, x):self.visx[x] = Truefor y in range(self.size):if self.visy[y]:continuetmp_delta = self.lx[x] + self.ly[y] - self.matrix[x][y]if tmp_delta == 0:self.visy[y] = Trueif self.match[y] == -1 or self.find_path(self.match[y]):self.match[y] = xreturn Trueelif self.slack[y] > tmp_delta:self.slack[y] = tmp_deltareturn Falsedef km_cal(self):for x in range(self.size):self.reset_slack()while True:self.reset_vis()if self.find_path(x):breakelse:  # update slackdelta = self.slack[~self.visy].min()self.lx[self.visx] -= deltaself.ly[self.visy] += deltaself.slack[~self.visy] -= deltadef compute(self, datas, min=False):""":param datas: 权值矩阵:param min: 是否取最小组合,默认最大组合:return: 输出行对应的结果位置"""self.matrix = np.array(datas) if not isinstance(datas, np.ndarray) else datasself.max_weight = self.matrix.sum()self.row, self.col = self.matrix.shape  # 源数据行列self.size = max(self.row, self.col)self.pad_matrix(min)print(self.matrix)self.lx = self.matrix.max(1)self.ly = np.array([0] * self.size, dtype=int)self.match = np.array([-1] * self.size, dtype=int)self.slack = np.array([0] * self.size, dtype=int)self.visx = np.array([False] * self.size, dtype=bool)self.visy = np.array([False] * self.size, dtype=bool)self.km_cal()match = [i[0] for i in sorted(enumerate(self.match), key=lambda x: x[1])]result = []for i in range(self.row):result.append((i, match[i] if match[i] < self.col else -1))  # 没有对应的值给-1return resultif __name__ == '__main__':a = np.array([[84, 65, 3, 34], [65, 56, 23, 35], [63, 18, 35, 12]])# a = np.array([[84, 65], [3, 34], [63, 18], [35, 12]])km = KM()min_ = km.compute(a.copy(), True)print("最小组合:", min_, a[[i[0] for i in min_], [i[1] for i in min_]])max_ = km.compute(a.copy())print("最大组合:", max_, a[[i[0] for i in max_], [i[1] for i in max_]])

输出:

最小组合: [(0, 2), (1, 3), (2, 1)] [ 3 35 18]
最大组合: [(0, 0), (1, 1), (2, 2)] [84 56 35]

这篇关于python --- 二分图匈牙利算法和KM算法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1074650

相关文章

Python版本信息获取方法详解与实战

《Python版本信息获取方法详解与实战》在Python开发中,获取Python版本号是调试、兼容性检查和版本控制的重要基础操作,本文详细介绍了如何使用sys和platform模块获取Python的主... 目录1. python版本号获取基础2. 使用sys模块获取版本信息2.1 sys模块概述2.1.1

一文详解Python如何开发游戏

《一文详解Python如何开发游戏》Python是一种非常流行的编程语言,也可以用来开发游戏模组,:本文主要介绍Python如何开发游戏的相关资料,文中通过代码介绍的非常详细,需要的朋友可以参考下... 目录一、python简介二、Python 开发 2D 游戏的优劣势优势缺点三、Python 开发 3D

Python函数作用域与闭包举例深度解析

《Python函数作用域与闭包举例深度解析》Python函数的作用域规则和闭包是编程中的关键概念,它们决定了变量的访问和生命周期,:本文主要介绍Python函数作用域与闭包的相关资料,文中通过代码... 目录1. 基础作用域访问示例1:访问全局变量示例2:访问外层函数变量2. 闭包基础示例3:简单闭包示例4

Python实现字典转字符串的五种方法

《Python实现字典转字符串的五种方法》本文介绍了在Python中如何将字典数据结构转换为字符串格式的多种方法,首先可以通过内置的str()函数进行简单转换;其次利用ison.dumps()函数能够... 目录1、使用json模块的dumps方法:2、使用str方法:3、使用循环和字符串拼接:4、使用字符

Python版本与package版本兼容性检查方法总结

《Python版本与package版本兼容性检查方法总结》:本文主要介绍Python版本与package版本兼容性检查方法的相关资料,文中提供四种检查方法,分别是pip查询、conda管理、PyP... 目录引言为什么会出现兼容性问题方法一:用 pip 官方命令查询可用版本方法二:conda 管理包环境方法

深入理解Mysql OnlineDDL的算法

《深入理解MysqlOnlineDDL的算法》本文主要介绍了讲解MysqlOnlineDDL的算法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小... 目录一、Online DDL 是什么?二、Online DDL 的三种主要算法2.1COPY(复制法)

基于Python开发Windows自动更新控制工具

《基于Python开发Windows自动更新控制工具》在当今数字化时代,操作系统更新已成为计算机维护的重要组成部分,本文介绍一款基于Python和PyQt5的Windows自动更新控制工具,有需要的可... 目录设计原理与技术实现系统架构概述数学建模工具界面完整代码实现技术深度分析多层级控制理论服务层控制注

pycharm跑python项目易出错的问题总结

《pycharm跑python项目易出错的问题总结》:本文主要介绍pycharm跑python项目易出错问题的相关资料,当你在PyCharm中运行Python程序时遇到报错,可以按照以下步骤进行排... 1. 一定不要在pycharm终端里面创建环境安装别人的项目子模块等,有可能出现的问题就是你不报错都安装

Python打包成exe常用的四种方法小结

《Python打包成exe常用的四种方法小结》本文主要介绍了Python打包成exe常用的四种方法,包括PyInstaller、cx_Freeze、Py2exe、Nuitka,文中通过示例代码介绍的非... 目录一.PyInstaller11.安装:2. PyInstaller常用参数下面是pyinstal

Python爬虫HTTPS使用requests,httpx,aiohttp实战中的证书异步等问题

《Python爬虫HTTPS使用requests,httpx,aiohttp实战中的证书异步等问题》在爬虫工程里,“HTTPS”是绕不开的话题,HTTPS为传输加密提供保护,同时也给爬虫带来证书校验、... 目录一、核心问题与优先级检查(先问三件事)二、基础示例:requests 与证书处理三、高并发选型: