头歌大数据答案(自用)

2024-06-19 06:04
文章标签 数据 答案 头歌 自用

本文主要是介绍头歌大数据答案(自用),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

第一关

# 命令行
start-all.sh
nohup hive --service metastore &
import org.apache.spark.sql.SparkSession
import org.apache.spark.sql.functions.col
import org.apache.spark.sql.functions._
object cleandata {def main(args: Array[String]): Unit = {//创建spark对象val spark = SparkSession.builder().appName("HiveSupport").master("local[*]").config("spark.sql.warehouse.dir", "hdfs://127.0.0.1:9000/opt/hive/warehouse").config("hive.metastore.uris", "thrift://127.0.0.1:9083").config("dfs.client.use.datanode.hostname", "true").enableHiveSupport().getOrCreate()//############# Begin ############//创建hive数据库daobidataspark.sql("create database daobidata")//创建hive数据表spark.sql("use daobidata")//创建diedata表spark.sql("create table if not exists diedata(bianh int,com_name string," +"com_addr string,cat string,se_cat string,com_des string,born_data string," +"death_data string,live_days int,financing string,total_money int,death_reason string,"+"invest_name string,ceo_name string,ceo_des string"+")row format delimited fields terminated by ',';")//将本地datadie.csv文件导入至hive数据库diedata表中spark.sql("load data local inpath '/data/workspace/myshixun/data/datadie.csv' into table diedata;")//进入diedata表进行清洗操作,删除为空的数据,根据倒闭原因切分出最主要原因,根据成立时间切分出,企业成立的年份,根据倒闭时间切分出,企业倒闭的年份val c1 = spark.table("diedata").na.drop("any").distinct().withColumn("death_reason",split(col("death_reason")," ")(0)).withColumn("bornyear",split(col("born_data"),"/")(0)).withColumn("deathyear",split(col("death_data"),"/")(0))c1.createOrReplaceTempView("c1")//创建die_data表spark.sql("create table if not exists die_data(bianh int,com_name string," +"com_addr string,cat string,se_cat string,com_des string,born_data string," +"death_data string,live_days int,financing string,total_money int,death_reason string,"+"invest_name string,ceo_name string,ceo_des string,bornyear string,deathyear string"+")row format delimited fields terminated by ',';")//将清洗完的数据导入至die_data表中spark.sql("insert overwrite table die_data select * from c1")//############# End ##############spark.stop()}
}

第二关

import org.apache.spark.sql.{SaveMode, SparkSession}
object citydiedata {def main(args: Array[String]): Unit = {val spark = SparkSession.builder().appName("SparkCleanJob").master("local[*]").getOrCreate()//************* Begin **************//读取数据,用逗号分隔,第一行不做为数据,做为标题val df1 = spark.read.option("delimiter", ",").option("header",true).csv("/data/workspace/myshixun/die_data.csv")df1.createOrReplaceTempView("df1")//使用spark SQL语句,根据城市统计企业倒闭top5val df=spark.sql("select df1.com_addr as com_addr,count(df1.com_addr) as saddr from df1 group by df1.com_addr order by saddr desc limit 5").repartition(1).write//连接数据库.format("jdbc").option("url", "jdbc:mysql://127.0.0.1:3306/diedata?useUnicode=true&characterEncoding=utf-8").option("driver","com.mysql.jdbc.Driver")//保存至数据库的数据表名.option("dbtable", "addr")//用户名.option("user", "root")//连接数据库的密码.option("password", "123123")//不破坏数据表结构,在后添加.mode(SaveMode.Append).save()//************ End ***********spark.stop()}
}   

import org.apache.spark.sql.{SaveMode, SparkSession}
object industrydata {def main(args: Array[String]): Unit = {val spark = SparkSession.builder().appName("SparkCleanJob").master("local[*]").getOrCreate()//########## Begin ############//读取数据,用逗号分隔,第一行不做为数据,做为标题val df1 = spark.read.option("delimiter", ",").option("header",true).csv("/data/workspace/myshixun/die_data.csv")df1.createOrReplaceTempView("df1")//使用spark SQL语句,根据行业统计企业倒闭top10val df=spark.sql("select df1.cat as industry,count(df1.cat) as catindustry from df1 group by df1.cat order by catindustry desc limit 10 ").repartition(1).write//连接数据库.format("jdbc").option("url", "jdbc:mysql://127.0.0.1:3306/diedata?useUnicode=true&characterEncoding=utf-8").option("driver","com.mysql.jdbc.Driver")//数据表名.option("dbtable", "industry").option("user", "root").option("password", "123123")//不破坏数据表结构,在后添加.mode(SaveMode.Append).save()//############ End ###########spark.stop()}
}  

import org.apache.spark.sql.{SaveMode, SparkSession}
object closedown {def main(args: Array[String]): Unit = {val spark = SparkSession.builder().appName("SparkCleanJob").master("local[*]").getOrCreate()//############ Begin ###########//读取数据,用逗号分隔,第一行不做为数据,做为标题val df1 = spark.read.option("delimiter", ",").option("header",true).csv("/data/workspace/myshixun/die_data.csv")df1.createOrReplaceTempView("df1")//使用spark SQL语句,根据倒闭原因字段,找到企业倒闭的主要原因,统计主要原因的个数val df=spark.sql("select df1.death_reason as death_reason,count(df1.death_reason) as dreason from df1 group by df1.death_reason order by dreason desc").repartition(1).write//连接数据库.format("jdbc")//数据库名.option("url", "jdbc:mysql://127.0.0.1:3306/diedata?useUnicode=true&characterEncoding=utf-8").option("driver","com.mysql.jdbc.Driver")//数据表名.option("dbtable", "cldown").option("user", "root").option("password", "123123")//不破坏表结构,在后面添加.mode(SaveMode.Append).save()//############ End ###########spark.stop()}
}

import org.apache.spark.sql.{SaveMode, SparkSession}
object comfinanc {def main(args: Array[String]): Unit = {val spark = SparkSession.builder().appName("SparkCleanJob").master("local[*]").getOrCreate()//############ Begin ###########//读取数据,用逗号分隔,去除表头,第一行不做为数据,做为标题val df1 = spark.read.option("delimiter", ",").option("header",true).csv("/data/workspace/myshixun/die_data.csv")df1.createOrReplaceTempView("df1")//使用spark SQL语句,根据行业细分领域字段,统计企业倒闭分布情况top20val df=spark.sql("select df1.se_cat as se_cat,count(df1.se_cat) as countsecat from df1 group by df1.se_cat order by countsecat desc limit 10").repartition(1).write//连接数据库.format("jdbc").option("url", "jdbc:mysql://127.0.0.1:3306/diedata?useUnicode=true&characterEncoding=utf-8").option("driver","com.mysql.jdbc.Driver")//数据表名.option("dbtable", "secat").option("user", "root").option("password", "123123")//不破坏表结构,在后面添加.mode(SaveMode.Append).save()//使用spark SQL语句,统计倒闭企业融资情况val d1=spark.sql("select df1.financing as financing,count(df1.financing) as countfinanc from df1 group by df1.financing order by countfinanc desc").repartition(1).write//连接数据库.format("jdbc").option("url", "jdbc:mysql://127.0.0.1:3306/diedata?useUnicode=true&characterEncoding=utf-8").option("driver","com.mysql.jdbc.Driver")//数据表名.option("dbtable", "financing").option("user", "root").option("password", "123123")//不破坏表结构,在后面添加.mode(SaveMode.Append).save()//########## End #########spark.stop()}
}

import org.apache.spark.sql.{SaveMode, SparkSession}
object yeardata {def main(args: Array[String]): Unit = {val spark = SparkSession.builder().appName("SparkCleanJob").master("local[*]").getOrCreate()//############ Begin ###########//读取数据,用逗号分隔,第一行不做为数据,做为标题val df1 = spark.read.option("delimiter", ",").option("header",true).csv("/data/workspace/myshixun/die_data.csv")df1.createOrReplaceTempView("df1")//根据企业成立时间字段,统计每年有多少成立的企业val d1=spark.sql("select df1.bornyear as bornyear,count(df1.bornyear) as byear from df1 group by df1.bornyear order by bornyear desc limit 10").repartition(1).write//连接数据库.format("jdbc").option("url", "jdbc:mysql://127.0.0.1:3306/diedata?useUnicode=true&characterEncoding=utf-8").option("driver","com.mysql.jdbc.Driver")//数据表名.option("dbtable", "bornyear").option("user", "root").option("password", "123123")//不破坏表结构,在后面添加.mode(SaveMode.Append).save()//根据企业倒闭年份字段,统计企业每个年份倒闭的数量val d2=spark.sql("select df1.deathyear as deathyear,count(df1.deathyear) as dyear from df1 group by df1.deathyear order by deathyear desc limit 10").repartition(1).write//连接数据库.format("jdbc")//数据库名.option("url", "jdbc:mysql://127.0.0.1:3306/diedata?useUnicode=true&characterEncoding=utf-8").option("driver","com.mysql.jdbc.Driver")//数据表名.option("dbtable", "deathyear").option("user", "root").option("password", "123123")//不破坏表结构,在后面添加.mode(SaveMode.Append).save()//############# End ############spark.stop()}
}

第三关

from app import db
class diedata(db.Model):__tablename__ = "addr"#**************** Begin ************#ID = db.Column(db.Integer, primary_key=True)  ##序号 主键com_addr = db.Column(db.String(255))  ##城市saddr = db.Column(db.Integer)  ##统计企业倒闭数量#************* End *************#
from flask import render_template
from app.views import index
from app import db
from app.model.models import diedata
@index.route("/city")
def index1():selectdata = db.session.query(diedata.com_addr).all()selectdata1 = db.session.query(diedata.saddr).all()list1 =[]list2=[]#********** Begin **********##获取城市倒闭企业top5的数据for k in selectdata:data = {"com_addr": k.com_addr,}list1.append(data)for i in selectdata1:list2.append(i[0])return render_template("test3.html", com_addr=list1, saddr=list2)#*********** End ***********#
<!DOCTYPE html>
<html lang="en">
<head><meta charset="UTF-8"><title>城市倒闭企业统计情况</title><script type="text/javascript" src="../static/js/echarts-all-3.js" ></script>
</head>
<body>
<!--准备一个DOM容器--><div id="main" style="width: 1500px;height: 650px;"></div><script>var myChart = echarts.init(document.getElementById('main'));//*********** Begin ***************com_addr=[]{% for a in com_addr %}com_addr.push('{{ a.com_addr }}');{% endfor %}var saddr={{saddr|tojson}};option = {title:{text:'城市倒闭企业top5展示图',left:'center'},legend: {data: ['城市倒闭企业个数'], //这里设置柱状图上面的方块,名称跟series里的name保持一致align: 'right', //图例显示的位置:靠左,靠右还是居中的设置.不设置则居中right: 10,},xAxis: {type: 'category',data: com_addr},yAxis: {type: 'value',name: '倒闭个数',axisLabel: {formatter: '{value} 个'}},series: [{data: saddr,type: 'bar',name: '城市倒闭企业个数',itemStyle: {normal: {color:'blue',lineStyle:{color:'blue'},label : {show: true}}}}]};myChart.setOption(option);//************ End ***************</script>
</body>
</html>

from app import db
class diedata(db.Model):__tablename__ = "industrydata"#************* Begin ************ID = db.Column(db.Integer, primary_key=True)  ##序号 主键industry = db.Column(db.String(255))  ##行业名catindustry = db.Column(db.Integer)  ##行业倒闭数#************* End ************
from flask import render_template
from app.views import index
from app import db
from app.model.models import diedata
@index.route("/industry")
def index1():#************* Begin ************selectdata = db.session.query(diedata.industry).all()selectdata1 = db.session.query(diedata.catindustry).all()list1 =[]list2=[]for k in selectdata:data = {"industry": k.industry,}list1.append(data)for i in selectdata1:list2.append(i[0])return render_template("test3.html", industry=list1, catindustry=list2)#************* End *************
<!DOCTYPE html>
<html lang="en">
<head><meta charset="UTF-8"><title>城市倒闭企业统计情况</title><script type="text/javascript" src="../static/js/echarts-all-3.js" ></script>
</head>
<body>
<!--准备一个DOM容器--><div id="main" style="width: 1500px;height: 650px;"></div><script>var myChart = echarts.init(document.getElementById('main'));//************* Begin ************industry=[]{% for a in industry %}industry.push('{{ a.industry }}');{% endfor %}var catindustry={{catindustry|tojson}};option = {title:{text:'行业企业倒闭top10折线图',left:'center'},legend: {data: ['行业企业倒闭数'], //这里设置柱状图上面的方块,名称跟series里的name保持一致align: 'right', //图例显示的位置:靠左,靠右还是居中的设置.不设置则居中right: 10,},xAxis: {type: 'category',name: '行业分类',axisLabel: {formatter: '{value}'},data: industry},yAxis: {type: 'value',name: '行业企业倒闭数',axisLabel: {formatter: '{value} 个'}},series: [{name:'行业企业倒闭数',data: catindustry,type: 'line',smooth: true,label:{show:true},itemStyle: {normal: {color:'green',lineStyle:{color:'green'},label : {show: true}}}}]};myChart.setOption(option);//************* End ************</script>
</body>
</html>

from app import db
class diedata(db.Model):__tablename__ = "closedown"############ Begin ###########ID = db.Column(db.Integer, primary_key=True)  ##序号 主键death_reason = db.Column(db.String(255))  ##倒闭原因dreason = db.Column(db.Integer)  ##倒闭原因统计############ End ###########
from flask import render_template
from app.views import index
from app import db
from app.model.models import diedata
@index.route("/deathreason")
def index1():selectdata = db.session.query(diedata.death_reason,diedata.dreason).all()list1 =[]############# Begin ############for k in selectdata:data = {"name": k.death_reason,"value":k.dreason}list1.append(data)return render_template("test3.html", datas=list1)############# End ############
<!DOCTYPE html>
<html lang="en">
<head><meta charset="UTF-8"><title>企业倒闭的原因</title><script type="text/javascript" src="../static/js/echarts-all-3.js" ></script>
</head>
<body>
<!--准备一个DOM容器--><div id="main" style="width: 1500px;height: 650px;"></div><script>var myChart = echarts.init(document.getElementById('main'));//########### Begin #############var datas={{datas|tojson}};option = {title: {text: '企业倒闭原因结果统计图',left: 'center'},legend: {top: 'bottom',data:datas},tooltip: {trigger: 'item',formatter: '{b} : {c} ({d}%)'},toolbox: {show: true},series: [{type: 'pie',radius: [50, 250],center: ['50%', '50%'],roseType: 'area',itemStyle: {borderRadius: 8},data:datas}]};myChart.setOption(option);//########### End #############</script>
</body>
</html>

from app import db
class diedata(db.Model):__tablename__ = "secat"############## Begin ###########ID = db.Column(db.Integer, primary_key=True)  ##序号 主键se_cat = db.Column(db.String(255))  ##细分领域countsecat = db.Column(db.Integer)  ##细分领域企业倒闭数############## End ############
class diedata1(db.Model):__tablename__ = "financing"############## Begin ###########ID = db.Column(db.Integer, primary_key=True)  ##序号 主键financing = db.Column(db.String(255))  ##融资名countfinanc = db.Column(db.Integer)  ##融资个数############## End ############
from flask import render_template
from app.views import index
from app import db
from app.model.models import diedata
from app.model.models import diedata1
@index.route("/fincat")
def index1():selectdata = db.session.query(diedata.se_cat).all()selectdata1 =db.session.query(diedata.countsecat).all()selectdata2=db.session.query(diedata1.financing).all()selectdata3=db.session.query(diedata1.countfinanc).all()list1 =[]list2 = []list3 = []list4 = []############## Begin ###########for i in selectdata:data = {"se_cat": i.se_cat,}list1.append(data)for j in selectdata1:list2.append(j[0])for x in selectdata2:data = {"financing": x.financing,}list3.append(data)for y in selectdata3:list4.append(y[0])return render_template("test3.html", se_cat=list1,countsecat=list2,financing=list3,countfinanc=list4)############## End ###########
<!DOCTYPE html>
<html lang="en">
<head><meta charset="UTF-8"><title>企业融资以及细分领域倒闭企业数据</title><script type="text/javascript" src="../static/js/echarts-all-3.js" ></script>
</head>
<body>
<!--准备一个DOM容器--><div id="main" style="width: 1500px;height: 650px;"></div><script>var myChart = echarts.init(document.getElementById('main'));//############## Begin ###########se_cat=[]{% for a in se_cat %}se_cat.push('{{ a.se_cat }}');{% endfor %}var countsecat={{countsecat|tojson}};financing=[]{% for b in financing %}financing.push('{{ b.financing }}');{% endfor %}var countfinanc={{countfinanc|tojson}};option = {title: [{left: 'center',text: '细分领域企业倒闭数'},{top: '55%',left: 'center',text: '企业融资情况'}],tooltip: {trigger: 'axis'},legend: {data: ['细分领域', '融资'],left: 10},xAxis: [{data: se_cat},{data: financing,gridIndex: 1}],yAxis: [{},{gridIndex: 1}],grid: [{bottom: '60%'},{top: '60%'}],series: [{name:'细分领域',type: 'bar',showSymbol: true,data: countsecat,label:{show:true},itemStyle: {normal: {color:'red',lineStyle:{color:'red'},label : {show: true}}}},{name:'融资',type: 'line',showSymbol: true,data: countfinanc,xAxisIndex: 1,yAxisIndex: 1,label:{show:true},itemStyle: {normal: {color:'green',lineStyle:{color:'green'},label : {show: true}}}}]};myChart.setOption(option);//############## End ###########</script>
</body>
</html>

from app import db
class diedata(db.Model):__tablename__ = "bornyear"########### Begin ##########ID = db.Column(db.Integer, primary_key=True)  ##序号 主键bornyear = db.Column(db.String(255))  ##成立年份byear = db.Column(db.Integer)  ##计数########### End ##########
class diedata1(db.Model):__tablename__ = "deathyear"########### Begin ##########ID = db.Column(db.Integer, primary_key=True)  ##序号 主键deathyear = db.Column(db.String(255))  ##倒闭年份dyear = db.Column(db.Integer)  ##计数########### End ##########
from flask import render_template
from app.views import index
from app import db
from app.model.models import diedata
from app.model.models import diedata1
@index.route("/ydata")
def index1():########### Begin ##########selectdata = db.session.query(diedata.bornyear,diedata.byear).all()selectdata1 =db.session.query(diedata1.deathyear,diedata1.dyear).all()list1 =[]list2 = []list3 = []list4 = []for x in selectdata:list1.append(str(x[0])+'年')list2.append(x[1])for j in selectdata1:list3.append(str(j[0])+'年')list4.append(j[1])############ End ############return render_template("test3.html", bornyear=list1,byear=list2,deathyear=list3,dyear=list4)
<!DOCTYPE html>
<html lang="en">
<head><meta charset="UTF-8"><title>企业成立年份和倒闭年份</title><script type="text/javascript" src="../static/js/echarts-all-3.js" ></script>
</head>
<body>
<!--准备一个DOM容器--><div id="main" style="width: 1500px;height: 650px;"></div><script>//########### Begin ###########var myChart = echarts.init(document.getElementById('main'));var bornyear={{bornyear|tojson}};var byear={{byear|tojson}};var deathyear={{deathyear|tojson}};var dyear={{dyear|tojson}};option = {title: [{left: 'center',text: '企业成立年份柱状图'},{top: '55%',left: 'center',text: '企业倒闭年份柱状图'}],tooltip: {trigger: 'axis'},legend: {data: ['成立年份', '倒闭年份'],left: 10},xAxis: [{data: bornyear},{data: deathyear,gridIndex: 1}],yAxis: [{},{gridIndex: 1}],grid: [{bottom: '60%'},{top: '60%'}],series: [{name:'成立年份',type: 'bar',showSymbol: true,data: byear,label:{show:true},itemStyle: {normal: {color:'red',lineStyle:{color:'red'},label : {show: true}}}},{name:'倒闭年份',type: 'bar',showSymbol: true,data: dyear,xAxisIndex: 1,yAxisIndex: 1,label:{show:true},itemStyle: {normal: {color:'green',lineStyle:{color:'green'},label : {show: true}}}}]};myChart.setOption(option);//########### End ###########</script>
</body>
</html>

这篇关于头歌大数据答案(自用)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1074211

相关文章

Linux下利用select实现串口数据读取过程

《Linux下利用select实现串口数据读取过程》文章介绍Linux中使用select、poll或epoll实现串口数据读取,通过I/O多路复用机制在数据到达时触发读取,避免持续轮询,示例代码展示设... 目录示例代码(使用select实现)代码解释总结在 linux 系统里,我们可以借助 select、

C#使用iText获取PDF的trailer数据的代码示例

《C#使用iText获取PDF的trailer数据的代码示例》开发程序debug的时候,看到了PDF有个trailer数据,挺有意思,于是考虑用代码把它读出来,那么就用到我们常用的iText框架了,所... 目录引言iText 核心概念C# 代码示例步骤 1: 确保已安装 iText步骤 2: C# 代码程

Pandas处理缺失数据的方式汇总

《Pandas处理缺失数据的方式汇总》许多教程中的数据与现实世界中的数据有很大不同,现实世界中的数据很少是干净且同质的,本文我们将讨论处理缺失数据的一些常规注意事项,了解Pandas如何表示缺失数据,... 目录缺失数据约定的权衡Pandas 中的缺失数据None 作为哨兵值NaN:缺失的数值数据Panda

C++中处理文本数据char与string的终极对比指南

《C++中处理文本数据char与string的终极对比指南》在C++编程中char和string是两种用于处理字符数据的类型,但它们在使用方式和功能上有显著的不同,:本文主要介绍C++中处理文本数... 目录1. 基本定义与本质2. 内存管理3. 操作与功能4. 性能特点5. 使用场景6. 相互转换核心区别

python库pydantic数据验证和设置管理库的用途

《python库pydantic数据验证和设置管理库的用途》pydantic是一个用于数据验证和设置管理的Python库,它主要利用Python类型注解来定义数据模型的结构和验证规则,本文给大家介绍p... 目录主要特点和用途:Field数值验证参数总结pydantic 是一个让你能够 confidentl

JAVA实现亿级千万级数据顺序导出的示例代码

《JAVA实现亿级千万级数据顺序导出的示例代码》本文主要介绍了JAVA实现亿级千万级数据顺序导出的示例代码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面... 前提:主要考虑控制内存占用空间,避免出现同时导出,导致主程序OOM问题。实现思路:A.启用线程池

SpringBoot分段处理List集合多线程批量插入数据方式

《SpringBoot分段处理List集合多线程批量插入数据方式》文章介绍如何处理大数据量List批量插入数据库的优化方案:通过拆分List并分配独立线程处理,结合Spring线程池与异步方法提升效率... 目录项目场景解决方案1.实体类2.Mapper3.spring容器注入线程池bejsan对象4.创建

PHP轻松处理千万行数据的方法详解

《PHP轻松处理千万行数据的方法详解》说到处理大数据集,PHP通常不是第一个想到的语言,但如果你曾经需要处理数百万行数据而不让服务器崩溃或内存耗尽,你就会知道PHP用对了工具有多强大,下面小编就... 目录问题的本质php 中的数据流处理:为什么必不可少生成器:内存高效的迭代方式流量控制:避免系统过载一次性

C#实现千万数据秒级导入的代码

《C#实现千万数据秒级导入的代码》在实际开发中excel导入很常见,现代社会中很容易遇到大数据处理业务,所以本文我就给大家分享一下千万数据秒级导入怎么实现,文中有详细的代码示例供大家参考,需要的朋友可... 目录前言一、数据存储二、处理逻辑优化前代码处理逻辑优化后的代码总结前言在实际开发中excel导入很

MyBatis-plus处理存储json数据过程

《MyBatis-plus处理存储json数据过程》文章介绍MyBatis-Plus3.4.21处理对象与集合的差异:对象可用内置Handler配合autoResultMap,集合需自定义处理器继承F... 目录1、如果是对象2、如果需要转换的是List集合总结对象和集合分两种情况处理,目前我用的MP的版本