【深度学习】TensorRT模型转换环境

2024-06-19 05:36

本文主要是介绍【深度学习】TensorRT模型转换环境,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Ubuntu 22.04 LTS、Cuda 12.3、Tensorrt 8.6.1、Python 3.10、A10G GPU

要在 Ubuntu 22.04 LTS 上使用 TensorRT 将模型转换为 TensorRT 格式,您需要安装一些必要的环境和依赖项。以下是详细的步骤:

  1. 更新系统

    sudo apt update
    sudo apt upgrade
    
  2. 安装 CUDA 12.3

    • 前往 NVIDIA CUDA Toolkit 下载适用于 Ubuntu 22.04 的 CUDA 12.3 安装包。
    • 按照 NVIDIA 官方文档中的步骤安装 CUDA 12.3。

    确保 CUDA 已正确安装:

    nvcc --version
    
  3. 安装 cuDNN

    • 前往 NVIDIA cuDNN 下载与 CUDA 12.3 兼容的 cuDNN。
    • 解压并安装 cuDNN:
      tar -xzvf cudnn-*-linux-x64-v*.tgz
      sudo cp cuda/include/cudnn*.h /usr/local/cuda/include
      sudo cp -P cuda/lib64/libcudnn* /usr/local/cuda/lib64
      sudo chmod a+r /usr/local/cuda/include/cudnn*.h /usr/local/cuda/lib64/libcudnn*
      
  4. 安装 TensorRT 8.6.1

    • 前往 NVIDIA TensorRT 下载 TensorRT 8.6.1。
    • 解压 TensorRT 安装包:
      tar -xzvf TensorRT-8.6.1.0.Ubuntu-20.04.x86_64-gnu.cuda-12.3.cudnn8.6.tar.gz
      
    • 将库文件复制到适当的位置:
      cd TensorRT-8.6.1.0
      sudo cp -r include/* /usr/local/include/
      sudo cp -r lib/* /usr/local/lib/
      sudo cp -r bin/* /usr/local/bin/
      sudo ldconfig
      
  5. 安装 Python 3.10

    • Ubuntu 22.04 默认已包含 Python 3.10,但如果没有,可以通过以下命令安装:
      sudo apt install python3.10 python3.10-dev python3.10-venv
      
  6. 安装 Python 包管理工具

    sudo apt install python3-pip
    
  7. 设置 Python 虚拟环境

    python3.10 -m venv trt_env
    source trt_env/bin/activate
    
  8. 安装 TensorRT Python 库

    • 安装依赖项:
      pip install numpy
      
    • 从 TensorRT 的 Python 目录中安装 Python 库:
      cd TensorRT-8.6.1.0/python
      pip install tensorrt-8.6.1-cp310-none-linux_x86_64.whl
      
  9. 安装 PyCUDA(可选,用于 CUDA 操作):

    pip install pycuda
    
  10. 验证安装

    import tensorrt as trt
    print(trt.__version__)
    

如果以上步骤均成功完成,您应该可以在 Ubuntu 22.04 上使用 TensorRT 将模型转换为 TensorRT 格式并运行推理任务。

这篇关于【深度学习】TensorRT模型转换环境的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1074143

相关文章

通过Docker容器部署Python环境的全流程

《通过Docker容器部署Python环境的全流程》在现代化开发流程中,Docker因其轻量化、环境隔离和跨平台一致性的特性,已成为部署Python应用的标准工具,本文将详细演示如何通过Docker容... 目录引言一、docker与python的协同优势二、核心步骤详解三、进阶配置技巧四、生产环境最佳实践

使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解

《使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解》本文详细介绍了如何使用Python通过ncmdump工具批量将.ncm音频转换为.mp3的步骤,包括安装、配置ffmpeg环... 目录1. 前言2. 安装 ncmdump3. 实现 .ncm 转 .mp34. 执行过程5. 执行结

Java实现将HTML文件与字符串转换为图片

《Java实现将HTML文件与字符串转换为图片》在Java开发中,我们经常会遇到将HTML内容转换为图片的需求,本文小编就来和大家详细讲讲如何使用FreeSpire.DocforJava库来实现这一功... 目录前言核心实现:html 转图片完整代码场景 1:转换本地 HTML 文件为图片场景 2:转换 H

SpringBoot 多环境开发实战(从配置、管理与控制)

《SpringBoot多环境开发实战(从配置、管理与控制)》本文详解SpringBoot多环境配置,涵盖单文件YAML、多文件模式、MavenProfile分组及激活策略,通过优先级控制灵活切换环境... 目录一、多环境开发基础(单文件 YAML 版)(一)配置原理与优势(二)实操示例二、多环境开发多文件版

使用docker搭建嵌入式Linux开发环境

《使用docker搭建嵌入式Linux开发环境》本文主要介绍了使用docker搭建嵌入式Linux开发环境,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面... 目录1、前言2、安装docker3、编写容器管理脚本4、创建容器1、前言在日常开发全志、rk等不同

深度解析Python中递归下降解析器的原理与实现

《深度解析Python中递归下降解析器的原理与实现》在编译器设计、配置文件处理和数据转换领域,递归下降解析器是最常用且最直观的解析技术,本文将详细介绍递归下降解析器的原理与实现,感兴趣的小伙伴可以跟随... 目录引言:解析器的核心价值一、递归下降解析器基础1.1 核心概念解析1.2 基本架构二、简单算术表达

深度解析Java @Serial 注解及常见错误案例

《深度解析Java@Serial注解及常见错误案例》Java14引入@Serial注解,用于编译时校验序列化成员,替代传统方式解决运行时错误,适用于Serializable类的方法/字段,需注意签... 目录Java @Serial 注解深度解析1. 注解本质2. 核心作用(1) 主要用途(2) 适用位置3

Python中Json和其他类型相互转换的实现示例

《Python中Json和其他类型相互转换的实现示例》本文介绍了在Python中使用json模块实现json数据与dict、object之间的高效转换,包括loads(),load(),dumps()... 项目中经常会用到json格式转为object对象、dict字典格式等。在此做个记录,方便后续用到该方

Java MCP 的鉴权深度解析

《JavaMCP的鉴权深度解析》文章介绍JavaMCP鉴权的实现方式,指出客户端可通过queryString、header或env传递鉴权信息,服务器端支持工具单独鉴权、过滤器集中鉴权及启动时鉴权... 目录一、MCP Client 侧(负责传递,比较简单)(1)常见的 mcpServers json 配置

Maven中生命周期深度解析与实战指南

《Maven中生命周期深度解析与实战指南》这篇文章主要为大家详细介绍了Maven生命周期实战指南,包含核心概念、阶段详解、SpringBoot特化场景及企业级实践建议,希望对大家有一定的帮助... 目录一、Maven 生命周期哲学二、default生命周期核心阶段详解(高频使用)三、clean生命周期核心阶