CHATGPT说这个运算放大器是比较器,我说这是运放典型的同相比例放大器,一个光控电路分析

本文主要是介绍CHATGPT说这个运算放大器是比较器,我说这是运放典型的同相比例放大器,一个光控电路分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

纠正

光控电路

图1 光控电路

该电路来自一个问题,链接见文末。
因GPT的分析有误,特此纠正。
引用图片和答案用于分析,如侵权请联系本人。

电路分析:

该电路为光控灯电路,灯光为LED发光二极管 D。
光敏电阻RG的阻值和光线强度关系,光线暗,电阻大,光线亮则电阻小;光敏电阻的暗电阻在1000K左右,亮电阻在几K到几十K.
UO1的电压为和光线强度敏感的电压,R1为固定电阻,因此:
光线暗,RG的阻值大,电阻分压的串联电路中,电阻大的,分的电压大,因此UO1大,接近5V
光线强,RG的阻值小,分到的电压小,则UO1小,接近0V,R1为调整UO1的电阻,调节使UO1在光线亮时,UO1电压在1-3V之间为宜,一般取值10K-100K。

LM358为双运放,不是轨到轨运放,且是双电源运放用于单电源电路中,其输出电压最高约3.8V,就是输出电源电压达不到5V,输出能接近5V的是轨到轨运放。

UA应为U1A,是LM358的2个运放中的1个,其2脚IN-与1脚OUT相连,构成典型的运放跟随器电路,跟随器的作用是阻抗变换,UO2近似等于UO1

U1B为典型的同相放大电路,R4和R为放大器的放大倍速-1,用于调整UO3输出电压,也是UO2的放大比例或放大倍数。UO3为UO2*(1+R4/R),比较器的输出是突变的阶跃的,而运放输出电压的变化是连续的,不会因UO2的变化而突变。UO3的点灯电压和采用LED的颜色有关,采用红色发光二极管时,UO3需要在1.8V以上才能点亮发光二极管;采用白色发光二极管时,UO3需要在3.2V以上。

R6的作用是调节LED发光二极管的工作电流,电阻取值范围在几百欧姆到几K欧姆,对应的电流范围是几百微安到几毫安。

R2是平衡电阻,使U1B的IN+和IN-的电流尽量相等,取值为R4*R/(R4+R),取接近的电阻即可。

分析:
光线暗时,UO1电压高,UO2同UO1,当UO3大于点灯电压时,(和UO1,R4与R有关),则发光二极管D点亮

光线亮时,UO1为低电压,UO2也为低电压,UO3输出电压降低,低于点灯电压时,则发光二极管D熄灭。

通过调节R1,或者R4与R的阻值,可以调节光线暗到什么程度时,发光二极管点亮。

灯亮

以下为NI Multisim 14.3仿真结果
运放的IN+与IN-虚短,因此IN+/IN-相同的情况下,无法比较,图2图3电路为运放的典型同相放大电路。
LED发光二极管点亮

图2:IN+ = IN- 为1V,放大倍数为3,运放输出电压3V,LED发光二极管点亮

灯灭

LED发光二极管熄灭

图3:IN+ = IN- 为0.5V,放大倍数为3,运放输出电压1.5V,LED发光二极管熄灭

CHATGPT关于运放的分析是错误的,在此纠正

GPT答案

该回答引用ChatGPT4o, 如有帮助,还请采纳。
这个电路是一个基于光敏电阻的光控灯电路。让我们逐步分析这个电路的工作原理。

电路组成
光敏电阻(RG)和电阻(R1):形成一个分压器,用来检测光强度的变化。
运算放大器(UA, U1B):两个运算放大器(UA和U1B)用于信号放大和比较。这里使用的是LM358双运算放大器。
电阻(R2, R4, R6):用于调整运算放大器的增益和输出电流限制。
LED灯(D):受控于运算放大器的输出,用于指示光控灯的开关状态。
工作原理
光敏电阻和电阻分压器:

光敏电阻(RG)的阻值随着光照强度的变化而变化。当光照强时,RG的阻值变小;当光照弱时,RG的阻值变大。
电阻(R1)和光敏电阻(RG)构成了一个分压电路,产生一个与光强度成反比的电压(U01)。
运算放大器UA:

运算放大器UA的正输入端连接到分压器的输出(U01)。
运算放大器UA配置成一个电压跟随器或缓冲器,其输出电压(U02)基本上与输入电压(U01)相同。
这样做的目的是稳定电压信号并提供一定的驱动能力。
运算放大器U1B:

运算放大器U1B配置为一个比较器。【此说法是错误的】
U1B的正输入端连接到UA的输出(U02),即光敏电阻的电压信号。
U1B的负输入端连接到一个设定的参考电压,通过电阻分压器(R和R4)设置。
当光强度变化导致U02的电压超过参考电压时,U1B的输出变高;当U02的电压低于参考电压时,U1B的输出变低。
LED灯(D):

运算放大器U1B的输出连接到一个限流电阻(R6)再连接到LED灯(D)。
当U1B输出高电平时,LED灯点亮;当U1B输出低电平时,LED灯熄灭。
总结
当环境光照强度变化时,光敏电阻的阻值发生变化,导致分压器输出电压(U01)变化。
这个变化的电压信号经过运算放大器UA缓冲后输入到运算放大器U1B的正输入端。
运算放大器U1B比较输入电压与设定的参考电压,控制其输出电平。
最终,运算放大器U1B的输出电平决定了LED灯的点亮与熄灭状态。
这个电路的核心在于利用光敏电阻对光强度的感应,通过运算放大器的放大和比较功能,实现对LED灯的光控开关功能。

问题链接:
电路原理(关键词-工作原理)

这篇关于CHATGPT说这个运算放大器是比较器,我说这是运放典型的同相比例放大器,一个光控电路分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1074076

相关文章

Nginx分布式部署流程分析

《Nginx分布式部署流程分析》文章介绍Nginx在分布式部署中的反向代理和负载均衡作用,用于分发请求、减轻服务器压力及解决session共享问题,涵盖配置方法、策略及Java项目应用,并提及分布式事... 目录分布式部署NginxJava中的代理代理分为正向代理和反向代理正向代理反向代理Nginx应用场景

Redis中的有序集合zset从使用到原理分析

《Redis中的有序集合zset从使用到原理分析》Redis有序集合(zset)是字符串与分值的有序映射,通过跳跃表和哈希表结合实现高效有序性管理,适用于排行榜、延迟队列等场景,其时间复杂度低,内存占... 目录开篇:排行榜背后的秘密一、zset的基本使用1.1 常用命令1.2 Java客户端示例二、zse

Redis中的AOF原理及分析

《Redis中的AOF原理及分析》Redis的AOF通过记录所有写操作命令实现持久化,支持always/everysec/no三种同步策略,重写机制优化文件体积,与RDB结合可平衡数据安全与恢复效率... 目录开篇:从日记本到AOF一、AOF的基本执行流程1. 命令执行与记录2. AOF重写机制二、AOF的

MyBatis Plus大数据量查询慢原因分析及解决

《MyBatisPlus大数据量查询慢原因分析及解决》大数据量查询慢常因全表扫描、分页不当、索引缺失、内存占用高及ORM开销,优化措施包括分页查询、流式读取、SQL优化、批处理、多数据源、结果集二次... 目录大数据量查询慢的常见原因优化方案高级方案配置调优监控与诊断总结大数据量查询慢的常见原因MyBAT

分析 Java Stream 的 peek使用实践与副作用处理方案

《分析JavaStream的peek使用实践与副作用处理方案》StreamAPI的peek操作是中间操作,用于观察元素但不终止流,其副作用风险包括线程安全、顺序混乱及性能问题,合理使用场景有限... 目录一、peek 操作的本质:有状态的中间操作二、副作用的定义与风险场景1. 并行流下的线程安全问题2. 顺

MyBatis/MyBatis-Plus同事务循环调用存储过程获取主键重复问题分析及解决

《MyBatis/MyBatis-Plus同事务循环调用存储过程获取主键重复问题分析及解决》MyBatis默认开启一级缓存,同一事务中循环调用查询方法时会重复使用缓存数据,导致获取的序列主键值均为1,... 目录问题原因解决办法如果是存储过程总结问题myBATis有如下代码获取序列作为主键IdMappe

Java中最全最基础的IO流概述和简介案例分析

《Java中最全最基础的IO流概述和简介案例分析》JavaIO流用于程序与外部设备的数据交互,分为字节流(InputStream/OutputStream)和字符流(Reader/Writer),处理... 目录IO流简介IO是什么应用场景IO流的分类流的超类类型字节文件流应用简介核心API文件输出流应用文

JavaScript中比较两个数组是否有相同元素(交集)的三种常用方法

《JavaScript中比较两个数组是否有相同元素(交集)的三种常用方法》:本文主要介绍JavaScript中比较两个数组是否有相同元素(交集)的三种常用方法,每种方法结合实例代码给大家介绍的非常... 目录引言:为什么"相等"判断如此重要?方法1:使用some()+includes()(适合小数组)方法2

Java+AI驱动实现PDF文件数据提取与解析

《Java+AI驱动实现PDF文件数据提取与解析》本文将和大家分享一套基于AI的体检报告智能评估方案,详细介绍从PDF上传、内容提取到AI分析、数据存储的全流程自动化实现方法,感兴趣的可以了解下... 目录一、核心流程:从上传到评估的完整链路二、第一步:解析 PDF,提取体检报告内容1. 引入依赖2. 封装

Python如何实现高效的文件/目录比较

《Python如何实现高效的文件/目录比较》在系统维护、数据同步或版本控制场景中,我们经常需要比较两个目录的差异,本文将分享一下如何用Python实现高效的文件/目录比较,并灵活处理排除规则,希望对大... 目录案例一:基础目录比较与排除实现案例二:高性能大文件比较案例三:跨平台路径处理案例四:可视化差异报