递归与回溯 || 排列问题

2024-06-19 04:36
文章标签 问题 递归 排列 回溯

本文主要是介绍递归与回溯 || 排列问题,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

前言:

全排列

题解:

全排列 II

 题解:

子集

题解: 

 组合

题解:

组合总和

题解:

电话号码的字母组合

题解: 

字母大小写全排列

题解:

优美的排列

题解: 


前言:

递归与回溯问题需要弄清楚以下几点:

1、递归前需要做什么?

2、什么时候递归,什么时候回溯?

3、回溯时需要做什么,需要返回值吗,如何接收返回值,需要恢复现场吗,还是什么都不需要处理?

全排列

46. 全排列 - 力扣(LeetCode)

题解:

面对这种排列问题,首先需要画出决策树,根据决策树来实现代码

我们以示例一为例,决策树如下:

nums = [ 1, 2, 3 ], 假设我们选择排列的第一个数为 1,我们继续在 1 2 3 里面选择排列的第二个数,由于 1 已经被选过了,我们只能选择 2 或 3 作为排列的第二个数:

1、假设选择 2 为排列的第二个数继续在 1 2 3 里面选择排列的第三个数,由于 1 2 已经被选过了,我们只能选择 3 作为排列的第三个数,最终排列的结果为 1 2 3 

2、假设选择 3 为排列的第二个数继续在 1 2 3 里面选择排列的第三个数,由于 1 3 已经被选过了,我们只能选择 2 作为排列的第三个数,最终排列的结果为 1 3 2 。

选择 2 作为排列的第一个数也是同理。结合文字和图中的决策树可以看出,我们每次都会在 1 2 3 里面做选择,但每次选择时,会排除已经选过的数字(因为不能重复选)。

nums = [ 1, 2, 3, 4 ] 也是同样的道理(只截取一部分作为参考):

接下来我们需要回答开头提出的几个问题:

1、递归前需要做什么?

递归前需要找出排列的下一个数字。我们用 for 循环来模拟决策树做选择的过程,为了避免选择了重复的数字,我们用 bool 数组来标记,true 表示该数字已经选择过了,false 表示该数字还没有被选择过。如果找到了排列的下一个数字,把该数字添加到排列中,并把该数字标记为 true。

为了便于把数字尾插到排列中,我们把排列设计为全局变量。

2、什么时候递归?

找到排列的下一个数字后,就可以递归,寻找排列的下一个数。

3、什么时候回溯?

排列后的数组长度 == nums 的长度时,就可以回溯。

4、回溯时需要做什么?

以 1 2 3 4 的排列为例,我们找到一个排列 1 2 3 4 之后(红色路径),需要从递归的最后一层回到 2 这一层,再选择 4 这个数字,继续递归(橙色路径),找出排列 1 2 4 3。这就要求我们:

1、从递归的最后一层 4 回溯到倒数第二层 3 时,把刚刚尾插到排列的数字 4 删掉,且把 4 置为 false(我们称这一操作为恢复现场),这样就可以把排列恢复到 1 2 3,然后继续回溯;

2、从递归的倒数第二层 3 回溯到 2 这一层时,当前排列为 1 2 3,我们把排列的最后一个数字删掉,并把 3 置为 false,这样就可以把排列恢复为 1 2,这样就可以接着递归橙色路径,找到排列 1 2 4 3。

总结:

回溯时需要   1、把当前排列的最后一个数字删掉;  2、把该数字置为 false 。

class Solution {vector<int> path;vector<vector<int>> ret;bool check[7];
public:vector<vector<int>> permute(vector<int>& nums) {dfs(nums);return ret;}void dfs(vector<int>& nums){if(path.size()==nums.size())//递归出口{ret.push_back(path);return;}for(int i=0;i<nums.size();i++)//模仿决策过程{if(check[i]==false)//该数字未访问过{path.push_back(nums[i]);check[i]=true;//把该数字设为访问过dfs(nums);//继续递归path.pop_back();//回溯时恢复现场check[i]=false;//把该数字恢复为未访问过}}}
};

全排列 II

47. 全排列 II - 力扣(LeetCode)

 题解:

这道题比较麻烦的是处理重复元素的排列,我们假设 nums = [ 1 ,1 ,1 ,2 ]:

从部分决策树可以看出, 即使我们标记了哪个元素已经访问过了,依旧会出现重复的排列!所以我们需要观察得出排列的规律(先对 nums 进行排序,这样重复的数就会排在一起,便于讨论):

如果 nums[ i ] 还没有被访问过

1、nums[ i ] 排在数组的第一个位置,那么 nums[ i ] 可以添加到排列;

2、 nums[ i ] 虽然不是数组的第一个元素,但是 nums[ i ] 和 nums[ i -1 ] 不相等,说明 nums[ i ] 可能在数组中只出现了一次,或者出现了很多次,但是 nums[ i ] 是这堆重复元素中第一个出现的,可以添加到排列中;

3、 nums[ i ] 不是数组的第一个元素,和 nums[ i -1 ] 相等了,但是 nums[ i -1 ] 已经被访问过了,那么可以添加到排列中。

因为递归是根据数组下标按从小到大的顺序添加到排列中的,若 nums [ i ] == nums[ i -1 ],对于同一层递归中,在访问  nums[ i ] 之前, nums[ i -1 ] 一定已经递归结束,且已经得出排列的结果了,而   nums[ i ]  和  nums[ i -1 ] 递归得到的排列是相同的,所以  nums[ i ] 没有必要进行递归了,所以剪枝!

class Solution {vector<vector<int>> ret;vector<int> path;bool check[9];
public:vector<vector<int>> permuteUnique(vector<int>& nums) {sort(nums.begin(),nums.end());dfs(nums,0);return ret;}void dfs(vector<int>& nums,int pos){if(pos==nums.size())//回溯 {ret.push_back(path);return;}for(int i=0;i<nums.size();i++){//当前数字为false,或者这个数字是第一个数字,或者这个数字和前一个不相同,//或者这个数字和前一个相同,但是前一个数字为true,则可以继续递归if(check[i]==false && (i==0 || nums[i]!=nums[i-1] || check[i-1]==true)){path.push_back(nums[i]);check[i]=true;dfs(nums,pos+1);path.pop_back();//恢复现场check[i]=false;}}}
};

子集

78. 子集 - 力扣(LeetCode)

题解: 

决策树如下:

在挑选子集的时候,由于子集的无序性,子集 [ 1, 2 ] 和 [ 2, 1 ] 是相同的集合,为了避免结果中出现元素相同但顺序不同的集合,我们需要规定,在找子集时,不要回头去访问比子集的第一个元素小的数字。

比如决策树中,我们从 2 开始找子集,那我们就从 2 往后寻找元素,不要回头去访问比 2 小的数了,最终找到的子集就是 [ 2 ] , [ 2 , 3 ],从 3 开始找子集,就从 3 往后寻找元素,不要回头去访问比 3 小的数,最终找到的子集就是 [ 3 ] 。  

为了实现这一规定,递归时需要记录上一层访问的数字,记为 pos,在 for 循环里面寻找元素时,从 pos 开始往后找。这其实是一个剪枝的操作!剪去了不必要的访问!

class Solution {vector<int> path;//子集vector<vector<int>> ret;
public:vector<vector<int>> subsets(vector<int>& nums) {ret.push_back(path);//空集dfs(nums,0);return ret;}void dfs(vector<int>& nums,int pos){if(pos==nums.size())    return;for(int i=pos;i<nums.size();i++){path.push_back(nums[i]);ret.push_back(path);dfs(nums,i+1);path.pop_back();}}
};

 组合

77. 组合 - 力扣(LeetCode)

题解:

和子集类似,为了避免出现重复的组合,需要记录上一层访问的数字 start,用 for 循环寻找组合的元素时,只需要从 start 往后开始寻找,不要回头访问数字!

class Solution {vector<int> path;vector<vector<int>> ret;bool check[21];
public:vector<vector<int>> combine(int n, int k) {dfs(n,k,1);return ret;}void dfs(int n,int k,int start){if(path.size()==k){ret.push_back(path);return;}for(int i=start;i<n+1;i++){path.push_back(i);dfs(n,k,i+1);path.pop_back();}}
};

组合总和

39. 组合总和 - 力扣(LeetCode)

题解:

决策树如下:

这道题规定一个数可以被无限重复次使用,所以我们不需要标记元素是否被访问过。

但是会出现重复的组合,比如 [ 2 , 2 , 3 ] 和 [ 3 , 2 , 2 ] 的组合总和都是 target,但是组合的元素相同,只是顺序不同,这样的组合就是重复的。为了避免出现重复的组合,我们要记录上一层访问的元素 pos,用 for 循环选择组合元素时,从 pos 往后开始选择,避免挑选组合的元素时走回头路。

这道题还需要注意递归的出口:

1、当 组合总和 ==  target 时,这个组合就是我们想要的组合,把该组合添加到结果数组,return;

2、如果 组合总和 > target ,已经没有继续寻找组合元素的必要了,return;

3、如果 组合总和 < target ,但是 组合总和+ candidates[ 0 ]  > target (candidates 已排序),即 目前的组合总和 加上 candidates 最小的数 就已经超过 target,那么 目前的组合总和 无论加上 candidates 的哪个数,最终结果一定会大于 target,此时已经没有继续寻找的必要了,return。

class Solution {vector<vector<int>> ret;vector<int> path;int pathsum=0;
public:vector<vector<int>> combinationSum(vector<int>& candidates, int target) {sort(candidates.begin(),candidates.end());if(candidates[0]>target)    return ret;dfs(candidates,target,0);return ret;}void dfs(vector<int>& candidates,int target,int pos){if(pathsum==target)//进结果{sort(path.begin(),path.end());ret.push_back(path);               return;}//递归出口,后面再怎么加也不能凑出targetif(pathsum>target || pathsum+candidates[0]>target) return;for(int i=pos;i<candidates.size();i++){path.push_back(candidates[i]); pathsum+=candidates[i];dfs(candidates,target,i);//i决定了不会走回头路path.pop_back(); pathsum-=candidates[i];//恢复现场}}
};

电话号码的字母组合

17. 电话号码的字母组合 - 力扣(LeetCode)

题解: 

class Solution {vector<string> tel{"","","abc","def","ghi","jkl","mno","pqrs","tuv","wxyz"};string path;vector<string> ret;
public:vector<string> letterCombinations(string digits) {if(digits.size()==0) return ret;dfs(digits,0);return ret;}void dfs(const string& digits,int pos){if(pos==digits.size()){ret.push_back(path);return;}for(auto ch:tel[digits[pos]-'0'])//访问数字对应的字母{path.push_back(ch);//pos+1,访问下一个数字dfs(digits,pos+1);path.pop_back();//恢复现场}}
};

字母大小写全排列

784. 字母大小写全排列 - 力扣(LeetCode)

题解:

这道题的决策树稍微有点不一样,有点类似二叉树,左子树是不变,右子树是变。

由于只需要改变大小写字母,在走 变 的这条分支时,如果当前访问的字符串为字母时,才需要大小写转换。

class Solution {vector<string> ret;string path;
public:vector<string> letterCasePermutation(string s) {dfs(s,0);return ret;}void dfs(const string& s,int pos){if(pos==s.size()){ret.push_back(path);return;}//不改变path.push_back(s[pos]);dfs(s,pos+1);path.pop_back();//改变if(s[pos]<'0' || s[pos]>'9'){char ch=change(s[pos]);path.push_back(ch);dfs(s,pos+1);path.pop_back();}}char change(char ch){if(ch>='a' && ch<='z') ch-=32;else ch+=32;return ch;}
};

优美的排列

526. 优美的排列 - 力扣(LeetCode)

题解: 

class Solution {int ret=0;bool check[16];
public:int countArrangement(int n) {dfs(n,1);return ret;}void dfs(int n,int i)//i为下标,pos为perm[i]{if(i==n+1){++ret;return;}for(int pos=1;pos<=n;pos++){if(!check[pos] && (pos%i==0 || i%pos==0)){check[pos]=true;dfs(n,i+1);check[pos]=false;}}}
};

未完待续,欢迎读者指出文章的错误!

这篇关于递归与回溯 || 排列问题的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1074025

相关文章

怎样通过分析GC日志来定位Java进程的内存问题

《怎样通过分析GC日志来定位Java进程的内存问题》:本文主要介绍怎样通过分析GC日志来定位Java进程的内存问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、GC 日志基础配置1. 启用详细 GC 日志2. 不同收集器的日志格式二、关键指标与分析维度1.

Java 线程安全与 volatile与单例模式问题及解决方案

《Java线程安全与volatile与单例模式问题及解决方案》文章主要讲解线程安全问题的五个成因(调度随机、变量修改、非原子操作、内存可见性、指令重排序)及解决方案,强调使用volatile关键字... 目录什么是线程安全线程安全问题的产生与解决方案线程的调度是随机的多个线程对同一个变量进行修改线程的修改操

Redis出现中文乱码的问题及解决

《Redis出现中文乱码的问题及解决》:本文主要介绍Redis出现中文乱码的问题及解决,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1. 问题的产生2China编程. 问题的解决redihttp://www.chinasem.cns数据进制问题的解决中文乱码问题解决总结

全面解析MySQL索引长度限制问题与解决方案

《全面解析MySQL索引长度限制问题与解决方案》MySQL对索引长度设限是为了保持高效的数据检索性能,这个限制不是MySQL的缺陷,而是数据库设计中的权衡结果,下面我们就来看看如何解决这一问题吧... 目录引言:为什么会有索引键长度问题?一、问题根源深度解析mysql索引长度限制原理实际场景示例二、五大解决

Springboot如何正确使用AOP问题

《Springboot如何正确使用AOP问题》:本文主要介绍Springboot如何正确使用AOP问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录​一、AOP概念二、切点表达式​execution表达式案例三、AOP通知四、springboot中使用AOP导出

Python中Tensorflow无法调用GPU问题的解决方法

《Python中Tensorflow无法调用GPU问题的解决方法》文章详解如何解决TensorFlow在Windows无法识别GPU的问题,需降级至2.10版本,安装匹配CUDA11.2和cuDNN... 当用以下代码查看GPU数量时,gpuspython返回的是一个空列表,说明tensorflow没有找到

解决未解析的依赖项:‘net.sf.json-lib:json-lib:jar:2.4‘问题

《解决未解析的依赖项:‘net.sf.json-lib:json-lib:jar:2.4‘问题》:本文主要介绍解决未解析的依赖项:‘net.sf.json-lib:json-lib:jar:2.4... 目录未解析的依赖项:‘net.sf.json-lib:json-lib:jar:2.4‘打开pom.XM

IDEA Maven提示:未解析的依赖项的问题及解决

《IDEAMaven提示:未解析的依赖项的问题及解决》:本文主要介绍IDEAMaven提示:未解析的依赖项的问题及解决,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝... 目录IDEA Maven提示:未解析的依编程赖项例如总结IDEA Maven提示:未解析的依赖项例如

Redis分片集群、数据读写规则问题小结

《Redis分片集群、数据读写规则问题小结》本文介绍了Redis分片集群的原理,通过数据分片和哈希槽机制解决单机内存限制与写瓶颈问题,实现分布式存储和高并发处理,但存在通信开销大、维护复杂及对事务支持... 目录一、分片集群解android决的问题二、分片集群图解 分片集群特征如何解决的上述问题?(与哨兵模

SpringBoot+Redis防止接口重复提交问题

《SpringBoot+Redis防止接口重复提交问题》:本文主要介绍SpringBoot+Redis防止接口重复提交问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不... 目录前言实现思路代码示例测试总结前言在项目的使用使用过程中,经常会出现某些操作在短时间内频繁提交。例