Twitter的分布式自增ID算法snowflake - C#版

2024-06-19 01:38

本文主要是介绍Twitter的分布式自增ID算法snowflake - C#版,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

概述
分布式系统中,有一些需要使用全局唯一ID的场景,这种时候为了防止ID冲突可以使用36位的UUID,但是UUID有一些缺点,首先他相对比较长,另外UUID一般是无序的。有些时候我们希望能使用一种简单一些的ID,并且希望ID能够按照时间有序生成。而twitter的snowflake解决了这种需求,最初Twitter把存储系统从MySQL迁移到Cassandra,因为Cassandra没有顺序ID生成机制,所以开发了这样一套全局唯一ID生成服务。
该项目地址为:https://github.com/twitter/snowflake是用Scala实现的。
python版详见开源项目https://github.com/erans/pysnowflake。

结构
snowflake的结构如下(每部分用-分开):

0 - 0000000000 0000000000 0000000000 0000000000 0 - 00000 - 00000 - 000000000000

第一位为未使用,接下来的41位为毫秒级时间(41位的长度可以使用69年),然后是5位datacenterId和5位workerId(10位的长度最多支持部署1024个节点) ,最后12位是毫秒内的计数(12位的计数顺序号支持每个节点每毫秒产生4096个ID序号)

一共加起来刚好64位,为一个Long型。(转换成字符串长度为18)

snowflake生成的ID整体上按照时间自增排序,并且整个分布式系统内不会产生ID碰撞(由datacenter和workerId作区分),并且效率较高。据说:snowflake每秒能够产生26万个ID。

源码(C#版本源码)

 public class IdWorker{//机器IDprivate static long workerId;private static long twepoch = 687888001020L; //唯一时间,这是一个避免重复的随机量,自行设定不要大于当前时间戳private static long sequence = 0L;private static int workerIdBits = 4; //机器码字节数。4个字节用来保存机器码(定义为Long类型会出现,最大偏移64位,所以左移64位没有意义)public static long maxWorkerId = -1L ^ -1L << workerIdBits; //最大机器IDprivate static int sequenceBits = 10; //计数器字节数,10个字节用来保存计数码private static int workerIdShift = sequenceBits; //机器码数据左移位数,就是后面计数器占用的位数private static int timestampLeftShift = sequenceBits + workerIdBits; //时间戳左移动位数就是机器码和计数器总字节数public static long sequenceMask = -1L ^ -1L << sequenceBits; //一微秒内可以产生计数,如果达到该值则等到下一微妙在进行生成private long lastTimestamp = -1L;/// <summary>/// 机器码/// </summary>/// <param name="workerId"></param>public IdWorker(long workerId){if (workerId > maxWorkerId || workerId < 0)throw new Exception(string.Format("worker Id can't be greater than {0} or less than 0 ", workerId));IdWorker.workerId = workerId;}public long nextId(){lock (this){long timestamp = timeGen();if (this.lastTimestamp == timestamp){ //同一微妙中生成IDIdWorker.sequence = (IdWorker.sequence + 1) & IdWorker.sequenceMask; //用&运算计算该微秒内产生的计数是否已经到达上限if (IdWorker.sequence == 0){//一微妙内产生的ID计数已达上限,等待下一微妙timestamp = tillNextMillis(this.lastTimestamp);}}else{ //不同微秒生成IDIdWorker.sequence = 0; //计数清0}if (timestamp < lastTimestamp){ //如果当前时间戳比上一次生成ID时时间戳还小,抛出异常,因为不能保证现在生成的ID之前没有生成过throw new Exception(string.Format("Clock moved backwards.  Refusing to generate id for {0} milliseconds",this.lastTimestamp - timestamp));}this.lastTimestamp = timestamp; //把当前时间戳保存为最后生成ID的时间戳long nextId = (timestamp - twepoch << timestampLeftShift) | IdWorker.workerId << IdWorker.workerIdShift | IdWorker.sequence;return nextId;}}/// <summary>/// 获取下一微秒时间戳/// </summary>/// <param name="lastTimestamp"></param>/// <returns></returns>private long tillNextMillis(long lastTimestamp){long timestamp = timeGen();while (timestamp <= lastTimestamp){timestamp = timeGen();}return timestamp;}/// <summary>/// 生成当前时间戳/// </summary>/// <returns></returns>private long timeGen(){return (long)(DateTime.UtcNow - new DateTime(1970, 1, 1, 0, 0, 0, DateTimeKind.Utc)).TotalMilliseconds;}}

调用方法:

 IdWorker idworker = new IdWorker(1);for (int i = 0; i < 1000; i++){Response.Write(idworker.nextId() + "<br/>");}

代码下载地址:下载
snowflate算法说明

这篇关于Twitter的分布式自增ID算法snowflake - C#版的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1073645

相关文章

C#实现千万数据秒级导入的代码

《C#实现千万数据秒级导入的代码》在实际开发中excel导入很常见,现代社会中很容易遇到大数据处理业务,所以本文我就给大家分享一下千万数据秒级导入怎么实现,文中有详细的代码示例供大家参考,需要的朋友可... 目录前言一、数据存储二、处理逻辑优化前代码处理逻辑优化后的代码总结前言在实际开发中excel导入很

C#使用Spire.Doc for .NET实现HTML转Word的高效方案

《C#使用Spire.Docfor.NET实现HTML转Word的高效方案》在Web开发中,HTML内容的生成与处理是高频需求,然而,当用户需要将HTML页面或动态生成的HTML字符串转换为Wor... 目录引言一、html转Word的典型场景与挑战二、用 Spire.Doc 实现 HTML 转 Word1

C#实现一键批量合并PDF文档

《C#实现一键批量合并PDF文档》这篇文章主要为大家详细介绍了如何使用C#实现一键批量合并PDF文档功能,文中的示例代码简洁易懂,感兴趣的小伙伴可以跟随小编一起学习一下... 目录前言效果展示功能实现1、添加文件2、文件分组(书签)3、定义页码范围4、自定义显示5、定义页面尺寸6、PDF批量合并7、其他方法

C#下Newtonsoft.Json的具体使用

《C#下Newtonsoft.Json的具体使用》Newtonsoft.Json是一个非常流行的C#JSON序列化和反序列化库,它可以方便地将C#对象转换为JSON格式,或者将JSON数据解析为C#对... 目录安装 Newtonsoft.json基本用法1. 序列化 C# 对象为 JSON2. 反序列化

C#文件复制异常:"未能找到文件"的解决方案与预防措施

《C#文件复制异常:未能找到文件的解决方案与预防措施》在C#开发中,文件操作是基础中的基础,但有时最基础的File.Copy()方法也会抛出令人困惑的异常,当targetFilePath设置为D:2... 目录一个看似简单的文件操作问题问题重现与错误分析错误代码示例错误信息根本原因分析全面解决方案1. 确保

基于C#实现PDF转图片的详细教程

《基于C#实现PDF转图片的详细教程》在数字化办公场景中,PDF文件的可视化处理需求日益增长,本文将围绕Spire.PDFfor.NET这一工具,详解如何通过C#将PDF转换为JPG、PNG等主流图片... 目录引言一、组件部署二、快速入门:PDF 转图片的核心 C# 代码三、分辨率设置 - 清晰度的决定因

C# LiteDB处理时间序列数据的高性能解决方案

《C#LiteDB处理时间序列数据的高性能解决方案》LiteDB作为.NET生态下的轻量级嵌入式NoSQL数据库,一直是时间序列处理的优选方案,本文将为大家大家简单介绍一下LiteDB处理时间序列数... 目录为什么选择LiteDB处理时间序列数据第一章:LiteDB时间序列数据模型设计1.1 核心设计原则

Redis实现分布式锁全过程

《Redis实现分布式锁全过程》文章介绍Redis实现分布式锁的方法,包括使用SETNX和EXPIRE命令确保互斥性与防死锁,Redisson客户端提供的便捷接口,以及Redlock算法通过多节点共识... 目录Redis实现分布式锁1. 分布式锁的基本原理2. 使用 Redis 实现分布式锁2.1 获取锁

C#高效实现Word文档内容查找与替换的6种方法

《C#高效实现Word文档内容查找与替换的6种方法》在日常文档处理工作中,尤其是面对大型Word文档时,手动查找、替换文本往往既耗时又容易出错,本文整理了C#查找与替换Word内容的6种方法,大家可以... 目录环境准备方法一:查找文本并替换为新文本方法二:使用正则表达式查找并替换文本方法三:将文本替换为图

C#使用Spire.XLS快速生成多表格Excel文件

《C#使用Spire.XLS快速生成多表格Excel文件》在日常开发中,我们经常需要将业务数据导出为结构清晰的Excel文件,本文将手把手教你使用Spire.XLS这个强大的.NET组件,只需几行C#... 目录一、Spire.XLS核心优势清单1.1 性能碾压:从3秒到0.5秒的质变1.2 批量操作的优雅