CDA二级(Level II)数据分析师——考试内容梳理四

2024-06-19 01:12

本文主要是介绍CDA二级(Level II)数据分析师——考试内容梳理四,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

定额抽样不属于概率抽样类型抽样就是分群抽样

假设检验中,两类错误的概率相加后不等于1,
在样本量增大的条件下,两类错误的概率可以同时减小,
通常控制第一类错误的概率 ;(去真

假设检验使用的是反证法,即先提出一个关于总体参数的假设,然后用样本数据来检验这个假设是否可能为真

在假设检验中,左侧检验为>=,右侧检验为<=,指原假设

区间估计是使用顺推法,即先不对总体参数提出具体假设,而是基于样本统计量来估计总体参数可能存在的区间

假设在T分布下,实际算出来的统计量的值为2.75,P=T.DIST(2.75:2:TRUE)
P值的实质是当前的临界点与分布曲线所围城的曲线面积,求累积分布

在大样本(n)下进行某列(A)均值的区间估计,点估计值为α,显著性水平为0.05
Z0.025为给定的显著性水平下的正太分布的临界值:
EXCEL计算:α±Z0.025*STDEV.S(A:A)/(AQRT(n),大样本为n小样本为n-1

区间估计的结果为点估计的值加减一定倍数的标准差

单因素方差分析中,当p<0.05,则接受备择假设,即至少有两组之间的均值有显著性差异

单因素方差分析的假设
1.每个总体服从正太分布
2.每个总体的方差相同
3.从每个总体中抽取的样本是相互独立的

在不知道具体比例的情况下,通常取P=0.5来计算最大样本量

方差分析主要用来比较两个或多个组的平均数差异,通常自变量是分类型,因变量是连续型

相对于主成分分析而言,因子分析时更偏向解释的分析时,需要进行因子分析,而类似于综合排名、综合打分这样无需进行解释的分析可以进行主成分分析

因子分析通常不适用于预测模型 ,它更侧重于变量的可解释性非预测准确性

进行主成分分析(PCA)之前,如果变量的取值范围相差很大,先对每个变量进行中心化,然后使用相关系数矩阵代替协方差矩阵计算主成分;

多元线性回归模型m,输出模型的残差图:plt.scatter(m.predict(data),m.resid),
resid:残差序列

在进行逻辑回归模型的系数解释时,应借助优势比的概念来进行,所以1作为参考进行解释;

在逻辑回归中,使用classification_report输出分类报告时要求输入的是真实标签和预测标签
classification_report(y,y_hat) 预测;

在逻辑回归模型中,使用约登指数来确定最优阈值,具体是选择使得==(tpr-fpr)==达到最大的时候的阈值作为最优阈值

逻辑回归通过logit模型转换后,输出0-1的概率值

目标函数包括决策变量;

高斯马尔科夫假设中,线性回归对·残差序列·的假设包括:不相关、正态性和同方差

岭回归和Lasso回归属于·收缩方法·,
可以处理多重共线性问题,但会改变原有回归模型

向后回归法要求样本量必须大于自变量的个数,否则模型会过拟合

QQ检验确保扰动性服从正太分布

时间序列差分操作中,包括·阶次差分·主要是用来消除长期趋势的影响,而·步次差·分主要是用来消除季节效应的影响先阶次再步次

在对时间序列模型进行评估时,常用的方法是残差的噪声检验

聚类算法:A(2,3) B(5,-1)
欧氏距离求斜线,结果为5
曼哈顿距离求绝对值,结果为|5-2|+|-1-3|=7

在使用Excel计算假设检验中对应的p值时,使用的函数是DIST(),计算临界值时使用的函数是INV();

根据数据收集方式的分类,分为实验数据和观测数据观测数据又分为追溯型跟踪数据

数据治理域包括:数据战略与规划、组织架构与职责、管理流程与管理制度;

数据应用域包含:监管报表应用、精准营销应用、产品创新应用;

设计逻辑模型时,要遵循范式的设计概念,减少冗余,完整性和可扩展性;

OLAP系统的响应时间合理OLTP系统对响应时间要求高

概念模型描述企业内主要业务的实体及实体间的业务关系,不需要对实体属性具象化;
学校→学生→应用

在信息不足的情况下,对照其它信息源进行修正;

指标不足的情况下,对照其它信息源进行修正;

指标体系包括:根指标、组合指标、派生指标,用户指标属于维度库;
根指标:销售额、净利润
组合指标:客单价=销售额/下单用户数
派生指标:客户流失率=流失用户数/总用户数,流失用户数为组合指标
根指标+维度指标→组合指标+根指标→派生指标

连续型变量
中心标准化Xi-mean(x)/Stdx
归一化Xi-min(x)/max(x)-min(x)

分箱
等宽取值范围一样
等深观察值数量一样

期望频数=(行数/样本量列数/样本量)样本量=(行数列数)/样本量)
卡方贡献=(观察频数-期望频数)2/期望频数) 远大于增大贡献率
卡方检验自由度=(行数-1)
(列数-1)

Python抽样:
1.random.sample:无放回→replace→False
2.random.choice:没有指定replace,默认True,有放回;

apply方法不能用来填充缺失值,lambda函数针对的是一个元素值,而不是一个series对象;

data_raw[‘gender’]=data_raw[‘gender’].replace({‘Male’:1,‘Female’:0}),
可以用于数据编码,并未处理缺失值;

sklearn+PCA:
preprocessing.scale(data):标准化到均值0方差1,不是归一化,是中心化
PCA(n_comporents=9):将数据降维到9个成分,不是降维了
pca.explanined_variance_:输出降维后各主成分的方差
pca.explanined_variance_:各主成分方差占总差分的比例

Python中删除多列的方式为:
df.drop(["A’,‘B’].axix=1),指定列
df.drop(columns=[‘A’,‘B’]),指定列名

这篇关于CDA二级(Level II)数据分析师——考试内容梳理四的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1073592

相关文章

SpringBoot分段处理List集合多线程批量插入数据方式

《SpringBoot分段处理List集合多线程批量插入数据方式》文章介绍如何处理大数据量List批量插入数据库的优化方案:通过拆分List并分配独立线程处理,结合Spring线程池与异步方法提升效率... 目录项目场景解决方案1.实体类2.Mapper3.spring容器注入线程池bejsan对象4.创建

PHP轻松处理千万行数据的方法详解

《PHP轻松处理千万行数据的方法详解》说到处理大数据集,PHP通常不是第一个想到的语言,但如果你曾经需要处理数百万行数据而不让服务器崩溃或内存耗尽,你就会知道PHP用对了工具有多强大,下面小编就... 目录问题的本质php 中的数据流处理:为什么必不可少生成器:内存高效的迭代方式流量控制:避免系统过载一次性

C#实现千万数据秒级导入的代码

《C#实现千万数据秒级导入的代码》在实际开发中excel导入很常见,现代社会中很容易遇到大数据处理业务,所以本文我就给大家分享一下千万数据秒级导入怎么实现,文中有详细的代码示例供大家参考,需要的朋友可... 目录前言一、数据存储二、处理逻辑优化前代码处理逻辑优化后的代码总结前言在实际开发中excel导入很

MyBatis-plus处理存储json数据过程

《MyBatis-plus处理存储json数据过程》文章介绍MyBatis-Plus3.4.21处理对象与集合的差异:对象可用内置Handler配合autoResultMap,集合需自定义处理器继承F... 目录1、如果是对象2、如果需要转换的是List集合总结对象和集合分两种情况处理,目前我用的MP的版本

GSON框架下将百度天气JSON数据转JavaBean

《GSON框架下将百度天气JSON数据转JavaBean》这篇文章主要为大家详细介绍了如何在GSON框架下实现将百度天气JSON数据转JavaBean,文中的示例代码讲解详细,感兴趣的小伙伴可以了解下... 目录前言一、百度天气jsON1、请求参数2、返回参数3、属性映射二、GSON属性映射实战1、类对象映

C# LiteDB处理时间序列数据的高性能解决方案

《C#LiteDB处理时间序列数据的高性能解决方案》LiteDB作为.NET生态下的轻量级嵌入式NoSQL数据库,一直是时间序列处理的优选方案,本文将为大家大家简单介绍一下LiteDB处理时间序列数... 目录为什么选择LiteDB处理时间序列数据第一章:LiteDB时间序列数据模型设计1.1 核心设计原则

Java+AI驱动实现PDF文件数据提取与解析

《Java+AI驱动实现PDF文件数据提取与解析》本文将和大家分享一套基于AI的体检报告智能评估方案,详细介绍从PDF上传、内容提取到AI分析、数据存储的全流程自动化实现方法,感兴趣的可以了解下... 目录一、核心流程:从上传到评估的完整链路二、第一步:解析 PDF,提取体检报告内容1. 引入依赖2. 封装

MySQL中查询和展示LONGBLOB类型数据的技巧总结

《MySQL中查询和展示LONGBLOB类型数据的技巧总结》在MySQL中LONGBLOB是一种二进制大对象(BLOB)数据类型,用于存储大量的二进制数据,:本文主要介绍MySQL中查询和展示LO... 目录前言1. 查询 LONGBLOB 数据的大小2. 查询并展示 LONGBLOB 数据2.1 转换为十

使用SpringBoot+InfluxDB实现高效数据存储与查询

《使用SpringBoot+InfluxDB实现高效数据存储与查询》InfluxDB是一个开源的时间序列数据库,特别适合处理带有时间戳的监控数据、指标数据等,下面详细介绍如何在SpringBoot项目... 目录1、项目介绍2、 InfluxDB 介绍3、Spring Boot 配置 InfluxDB4、I

Java整合Protocol Buffers实现高效数据序列化实践

《Java整合ProtocolBuffers实现高效数据序列化实践》ProtocolBuffers是Google开发的一种语言中立、平台中立、可扩展的结构化数据序列化机制,类似于XML但更小、更快... 目录一、Protocol Buffers简介1.1 什么是Protocol Buffers1.2 Pro