青蛙跳台阶问题的算法以及优化问题

2024-06-18 23:58

本文主要是介绍青蛙跳台阶问题的算法以及优化问题,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

题目:一只青蛙一次可以跳上1级台阶,也可以跳上2级台阶。求该青蛙跳上一个n级的台阶总共有多少种跳法?
在遇到这种题目若是没有具体的思路之前,我们可以先列出前面几项的结果sum:
当 n = 1 时,青蛙仅有直接跳上一级台阶这种跳法,故 sum = 1;
当 n = 2 时,青蛙可以先跳 上 1 级,然后再跳 上 1 级到达2级台阶,共有2种跳法;若青蛙直接跳 2 级台阶,那么有1种跳法,从而 sum =2 + 1 = 3;
同理以上分析知道:
当 n = 3 时, sum = 5;
当 n = 4 时,sum = 8;
当 n = 5 时, sum = 13;

通过观察,我们发现其规律:
当 n = 1 时,sum = 1;
当 n = 2 时 ,sum = 2;

从 第3项起,当前项的结果sum总是等于前两项的和,即有:
f(n) = f(n -1) + f( n -2) ,n > 2;
当我们看到这个规律时,便很容易想到这是 斐波那契数列
数学函数表示如下:
在这里插入图片描述
关于斐波那契数列的求解,我们有递归方法和非递归方法的求解,下面给出具体的递归算法:
在函数 int jumb(int n)中
(1)如果 n = 1 || n =2,直接返回结果 n;
(2)如果 n > 2,则计算 返回 jumb(n -1) + jumb(n-2);
其具体代码实现为:

int jumb(int n) {if (n <= 0) {return 0;}//递归结束if (n == 1 || n == 2){return n;}//递归计算 f(n) = f( n -1 )+f( n - 2);return jumb(n -1) + jumb(n-2);
}

测试结果:

int main() {int n = 5;cout << "青蛙跳"<<n<<"阶台阶跳法种数:" << jumb(n) << endl;n = 10;cout << "青蛙跳" << n << "阶台阶跳法种数:" << jumb(n) << endl;system("pause");return 0;
}

在这里插入图片描述
下面笔者用图解来分析当 n =7 时 该递归算法的调用情况:
在这里插入图片描述
该递归算法有两个问题,一个是变量能表示的最大数值有限制,另一个是递归深度有限制,递归深度太深,计算速度特别慢,在笔者的计算机上 当 n = 50 时,笔者的电脑的散热扇狂转,CUP高速运转,等待了很久都没有得出答案。结合图示我们可以发现,在递归的过程中计算机要做很多重复的计算,比如图中计算 n = 7 时 ,f(4),f(3),f(2),f(1)的值重复计算了很多次,这样就导致了计算机要花费更多的时间和空间资源进行计算,其算法的时间复杂度为 O(n^2),空间复杂度为:O(n)。
下面我们可以对该递归算法进行改善:

int jumb(int n,int first ,int second) {if (n <= 0) {return 0;}//递归结束if (n == 1 || n == 2){return n;}if (n == 3){return first + second;}//递归计算 f(n) = f( n -1 )+f( n - 2);return jumb(n-1,second,second + first);
}

测试:

int main() {int n = 5;cout << "青蛙跳"<<n<<"阶台阶跳法种数:" << jumb(n,1,2) << endl;n = 40;cout << "青蛙跳" << n << "阶台阶跳法种数:" << jumb(n,1,2) << endl;system("pause");return 0;
}

在这里插入图片描述
可以看到其结果和之前的递归方法结果一致。当我们调用的时候,参数jumb(int n,int first ,int second) n表示跳的台阶数,first表示第1次的结果,second表示第2次的结果,分别为1和2.为了便于理解,请看图解:
在这里插入图片描述
从图解我们可以发现,其实该递归函数实际上就是使用逆向迭代的方式计算结果:
当 n = 7 时, sum = 1 + 2;
当 n = 6 时, sum = 2 + 3;
当 n = 5 时, sum = 3 +5;
当 n = 4 时, sum = 5 + 8;
当 n = 3 时, sum = 8 + 13;退出循环,返回结果 sum = 21 ;
由于该递归算法是从尾部开始递归,所以该递归算法也称为:尾递归算法,根据图示我们可以发现尾递归算法只需要计算f(7)—>f(6)----> f(5) ----> f(4) ----->f(3),每个结果只计算一次,减少了那些没必要的重复计算,从而大大提高了程序的执行效率。其算法时间复杂度为:O(n),空间复杂度为:O(n)。
我们知道理论上说,任何一个递归的算法都可以转换为一个非递归算法,结合尾递归算法的实现,我们可以设计一个非递归的算法:

int Jumb(int n) {if (n <= 0) {return 0;}if (n == 1 || n == 2){return n;}//临时变量,也就是当 n= 1时的结果int a = 1;也就是当 n= 2时的结果//临时变量int b = 2;//记录总结果int sum = 0;for (int i = 3; i <= n;i++) {//计算f(n) = f( n -1 )+f( n - 2)sum = a + b;a = b;b = sum;}return sum;
}

我们很容易发现其实该非递归算法本质上和尾递归算法的思路是一致,其时间复杂度为:O(n),空间复杂度为:O(1)。
通过以上比较,我们发下,在处理斐波那契数列的计算时,非递归算法的总体性能要高于递归算法的。
好了,本次简单的算法分析到此结束,由于个人水平有限,出错再所难免,欢迎大家指正。

这篇关于青蛙跳台阶问题的算法以及优化问题的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1073432

相关文章

IDEA和GIT关于文件中LF和CRLF问题及解决

《IDEA和GIT关于文件中LF和CRLF问题及解决》文章总结:因IDEA默认使用CRLF换行符导致Shell脚本在Linux运行报错,需在编辑器和Git中统一为LF,通过调整Git的core.aut... 目录问题描述问题思考解决过程总结问题描述项目软件安装shell脚本上git仓库管理,但拉取后,上l

深入理解Mysql OnlineDDL的算法

《深入理解MysqlOnlineDDL的算法》本文主要介绍了讲解MysqlOnlineDDL的算法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小... 目录一、Online DDL 是什么?二、Online DDL 的三种主要算法2.1COPY(复制法)

idea npm install很慢问题及解决(nodejs)

《ideanpminstall很慢问题及解决(nodejs)》npm安装速度慢可通过配置国内镜像源(如淘宝)、清理缓存及切换工具解决,建议设置全局镜像(npmconfigsetregistryht... 目录idea npm install很慢(nodejs)配置国内镜像源清理缓存总结idea npm in

pycharm跑python项目易出错的问题总结

《pycharm跑python项目易出错的问题总结》:本文主要介绍pycharm跑python项目易出错问题的相关资料,当你在PyCharm中运行Python程序时遇到报错,可以按照以下步骤进行排... 1. 一定不要在pycharm终端里面创建环境安装别人的项目子模块等,有可能出现的问题就是你不报错都安装

idea突然报错Malformed \uxxxx encoding问题及解决

《idea突然报错Malformeduxxxxencoding问题及解决》Maven项目在切换Git分支时报错,提示project元素为描述符根元素,解决方法:删除Maven仓库中的resolv... 目www.chinasem.cn录问题解决方式总结问题idea 上的 maven China编程项目突然报错,是

Python爬虫HTTPS使用requests,httpx,aiohttp实战中的证书异步等问题

《Python爬虫HTTPS使用requests,httpx,aiohttp实战中的证书异步等问题》在爬虫工程里,“HTTPS”是绕不开的话题,HTTPS为传输加密提供保护,同时也给爬虫带来证书校验、... 目录一、核心问题与优先级检查(先问三件事)二、基础示例:requests 与证书处理三、高并发选型:

前端导出Excel文件出现乱码或文件损坏问题的解决办法

《前端导出Excel文件出现乱码或文件损坏问题的解决办法》在现代网页应用程序中,前端有时需要与后端进行数据交互,包括下载文件,:本文主要介绍前端导出Excel文件出现乱码或文件损坏问题的解决办法,... 目录1. 检查后端返回的数据格式2. 前端正确处理二进制数据方案 1:直接下载(推荐)方案 2:手动构造

Python绘制TSP、VRP问题求解结果图全过程

《Python绘制TSP、VRP问题求解结果图全过程》本文介绍用Python绘制TSP和VRP问题的静态与动态结果图,静态图展示路径,动态图通过matplotlib.animation模块实现动画效果... 目录一、静态图二、动态图总结【代码】python绘制TSP、VRP问题求解结果图(包含静态图与动态图

MyBatis/MyBatis-Plus同事务循环调用存储过程获取主键重复问题分析及解决

《MyBatis/MyBatis-Plus同事务循环调用存储过程获取主键重复问题分析及解决》MyBatis默认开启一级缓存,同一事务中循环调用查询方法时会重复使用缓存数据,导致获取的序列主键值均为1,... 目录问题原因解决办法如果是存储过程总结问题myBATis有如下代码获取序列作为主键IdMappe

k8s容器放开锁内存限制问题

《k8s容器放开锁内存限制问题》nccl-test容器运行mpirun时因NCCL_BUFFSIZE过大导致OOM,需通过修改docker服务配置文件,将LimitMEMLOCK设为infinity并... 目录问题问题确认放开容器max locked memory限制总结参考:https://Access