青蛙跳台阶问题的算法以及优化问题

2024-06-18 23:58

本文主要是介绍青蛙跳台阶问题的算法以及优化问题,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

题目:一只青蛙一次可以跳上1级台阶,也可以跳上2级台阶。求该青蛙跳上一个n级的台阶总共有多少种跳法?
在遇到这种题目若是没有具体的思路之前,我们可以先列出前面几项的结果sum:
当 n = 1 时,青蛙仅有直接跳上一级台阶这种跳法,故 sum = 1;
当 n = 2 时,青蛙可以先跳 上 1 级,然后再跳 上 1 级到达2级台阶,共有2种跳法;若青蛙直接跳 2 级台阶,那么有1种跳法,从而 sum =2 + 1 = 3;
同理以上分析知道:
当 n = 3 时, sum = 5;
当 n = 4 时,sum = 8;
当 n = 5 时, sum = 13;

通过观察,我们发现其规律:
当 n = 1 时,sum = 1;
当 n = 2 时 ,sum = 2;

从 第3项起,当前项的结果sum总是等于前两项的和,即有:
f(n) = f(n -1) + f( n -2) ,n > 2;
当我们看到这个规律时,便很容易想到这是 斐波那契数列
数学函数表示如下:
在这里插入图片描述
关于斐波那契数列的求解,我们有递归方法和非递归方法的求解,下面给出具体的递归算法:
在函数 int jumb(int n)中
(1)如果 n = 1 || n =2,直接返回结果 n;
(2)如果 n > 2,则计算 返回 jumb(n -1) + jumb(n-2);
其具体代码实现为:

int jumb(int n) {if (n <= 0) {return 0;}//递归结束if (n == 1 || n == 2){return n;}//递归计算 f(n) = f( n -1 )+f( n - 2);return jumb(n -1) + jumb(n-2);
}

测试结果:

int main() {int n = 5;cout << "青蛙跳"<<n<<"阶台阶跳法种数:" << jumb(n) << endl;n = 10;cout << "青蛙跳" << n << "阶台阶跳法种数:" << jumb(n) << endl;system("pause");return 0;
}

在这里插入图片描述
下面笔者用图解来分析当 n =7 时 该递归算法的调用情况:
在这里插入图片描述
该递归算法有两个问题,一个是变量能表示的最大数值有限制,另一个是递归深度有限制,递归深度太深,计算速度特别慢,在笔者的计算机上 当 n = 50 时,笔者的电脑的散热扇狂转,CUP高速运转,等待了很久都没有得出答案。结合图示我们可以发现,在递归的过程中计算机要做很多重复的计算,比如图中计算 n = 7 时 ,f(4),f(3),f(2),f(1)的值重复计算了很多次,这样就导致了计算机要花费更多的时间和空间资源进行计算,其算法的时间复杂度为 O(n^2),空间复杂度为:O(n)。
下面我们可以对该递归算法进行改善:

int jumb(int n,int first ,int second) {if (n <= 0) {return 0;}//递归结束if (n == 1 || n == 2){return n;}if (n == 3){return first + second;}//递归计算 f(n) = f( n -1 )+f( n - 2);return jumb(n-1,second,second + first);
}

测试:

int main() {int n = 5;cout << "青蛙跳"<<n<<"阶台阶跳法种数:" << jumb(n,1,2) << endl;n = 40;cout << "青蛙跳" << n << "阶台阶跳法种数:" << jumb(n,1,2) << endl;system("pause");return 0;
}

在这里插入图片描述
可以看到其结果和之前的递归方法结果一致。当我们调用的时候,参数jumb(int n,int first ,int second) n表示跳的台阶数,first表示第1次的结果,second表示第2次的结果,分别为1和2.为了便于理解,请看图解:
在这里插入图片描述
从图解我们可以发现,其实该递归函数实际上就是使用逆向迭代的方式计算结果:
当 n = 7 时, sum = 1 + 2;
当 n = 6 时, sum = 2 + 3;
当 n = 5 时, sum = 3 +5;
当 n = 4 时, sum = 5 + 8;
当 n = 3 时, sum = 8 + 13;退出循环,返回结果 sum = 21 ;
由于该递归算法是从尾部开始递归,所以该递归算法也称为:尾递归算法,根据图示我们可以发现尾递归算法只需要计算f(7)—>f(6)----> f(5) ----> f(4) ----->f(3),每个结果只计算一次,减少了那些没必要的重复计算,从而大大提高了程序的执行效率。其算法时间复杂度为:O(n),空间复杂度为:O(n)。
我们知道理论上说,任何一个递归的算法都可以转换为一个非递归算法,结合尾递归算法的实现,我们可以设计一个非递归的算法:

int Jumb(int n) {if (n <= 0) {return 0;}if (n == 1 || n == 2){return n;}//临时变量,也就是当 n= 1时的结果int a = 1;也就是当 n= 2时的结果//临时变量int b = 2;//记录总结果int sum = 0;for (int i = 3; i <= n;i++) {//计算f(n) = f( n -1 )+f( n - 2)sum = a + b;a = b;b = sum;}return sum;
}

我们很容易发现其实该非递归算法本质上和尾递归算法的思路是一致,其时间复杂度为:O(n),空间复杂度为:O(1)。
通过以上比较,我们发下,在处理斐波那契数列的计算时,非递归算法的总体性能要高于递归算法的。
好了,本次简单的算法分析到此结束,由于个人水平有限,出错再所难免,欢迎大家指正。

这篇关于青蛙跳台阶问题的算法以及优化问题的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1073432

相关文章

线上Java OOM问题定位与解决方案超详细解析

《线上JavaOOM问题定位与解决方案超详细解析》OOM是JVM抛出的错误,表示内存分配失败,:本文主要介绍线上JavaOOM问题定位与解决方案的相关资料,文中通过代码介绍的非常详细,需要的朋... 目录一、OOM问题核心认知1.1 OOM定义与技术定位1.2 OOM常见类型及技术特征二、OOM问题定位工具

Vue3绑定props默认值问题

《Vue3绑定props默认值问题》使用Vue3的defineProps配合TypeScript的interface定义props类型,并通过withDefaults设置默认值,使组件能安全访问传入的... 目录前言步骤步骤1:使用 defineProps 定义 Props步骤2:设置默认值总结前言使用T

Web服务器-Nginx-高并发问题

《Web服务器-Nginx-高并发问题》Nginx通过事件驱动、I/O多路复用和异步非阻塞技术高效处理高并发,结合动静分离和限流策略,提升性能与稳定性... 目录前言一、架构1. 原生多进程架构2. 事件驱动模型3. IO多路复用4. 异步非阻塞 I/O5. Nginx高并发配置实战二、动静分离1. 职责2

从原理到实战解析Java Stream 的并行流性能优化

《从原理到实战解析JavaStream的并行流性能优化》本文给大家介绍JavaStream的并行流性能优化:从原理到实战的全攻略,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的... 目录一、并行流的核心原理与适用场景二、性能优化的核心策略1. 合理设置并行度:打破默认阈值2. 避免装箱

解决升级JDK报错:module java.base does not“opens java.lang.reflect“to unnamed module问题

《解决升级JDK报错:modulejava.basedoesnot“opensjava.lang.reflect“tounnamedmodule问题》SpringBoot启动错误源于Jav... 目录问题描述原因分析解决方案总结问题描述启动sprintboot时报以下错误原因分析编程异js常是由Ja

Python实战之SEO优化自动化工具开发指南

《Python实战之SEO优化自动化工具开发指南》在数字化营销时代,搜索引擎优化(SEO)已成为网站获取流量的重要手段,本文将带您使用Python开发一套完整的SEO自动化工具,需要的可以了解下... 目录前言项目概述技术栈选择核心模块实现1. 关键词研究模块2. 网站技术seo检测模块3. 内容优化分析模

Java实现复杂查询优化的7个技巧小结

《Java实现复杂查询优化的7个技巧小结》在Java项目中,复杂查询是开发者面临的“硬骨头”,本文将通过7个实战技巧,结合代码示例和性能对比,手把手教你如何让复杂查询变得优雅,大家可以根据需求进行选择... 目录一、复杂查询的痛点:为何你的代码“又臭又长”1.1冗余变量与中间状态1.2重复查询与性能陷阱1.

Python内存优化的实战技巧分享

《Python内存优化的实战技巧分享》Python作为一门解释型语言,虽然在开发效率上有着显著优势,但在执行效率方面往往被诟病,然而,通过合理的内存优化策略,我们可以让Python程序的运行速度提升3... 目录前言python内存管理机制引用计数机制垃圾回收机制内存泄漏的常见原因1. 循环引用2. 全局变

MySQL 表空却 ibd 文件过大的问题及解决方法

《MySQL表空却ibd文件过大的问题及解决方法》本文给大家介绍MySQL表空却ibd文件过大的问题及解决方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考... 目录一、问题背景:表空却 “吃满” 磁盘的怪事二、问题复现:一步步编程还原异常场景1. 准备测试源表与数据

解决Nginx启动报错Job for nginx.service failed because the control process exited with error code问题

《解决Nginx启动报错Jobfornginx.servicefailedbecausethecontrolprocessexitedwitherrorcode问题》Nginx启... 目录一、报错如下二、解决原因三、解决方式总结一、报错如下Job for nginx.service failed bec