prim算法和kruskal算法详解

2024-06-18 23:58
文章标签 算法 详解 prim kruskal

本文主要是介绍prim算法和kruskal算法详解,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在我们的数据结构中,当涉及到图的寻找最小的路径时,不得不提到最经典的寻找图的最小生成树的算法:
prim算法和kruskal算法详解。下面笔者将与大家共同探讨一下这两个经典的算法和他们的C++代码实现。
首先我们先看引自百度百科的prim算法的定义:普里姆算法(Prim算法),图论中的一种算法,可在加权连通图里搜索最小生成树。意即由此算法搜索到的边子集所构成的树中,不但包括了连通图里的所有顶点(英语:Vertex (graph theory)),且其所有边的权值之和亦为最小。它的算法描述为:
1).输入:一个加权连通图,其中顶点集合为V,边集合为E;
2).初始化:Vnew = {x},其中x为集合V中的任一节点(起始点),Enew = {},为空;
3).重复下列操作,直到Vnew = V:
a.在集合E中选取权值最小的边<u, v>,其中u为集合Vnew中的元素,而v不在Vnew集合当中,并且v∈V(如果存在有多条满足前述条件即具有相同权值的边,则可任意选取其中之一);
b.将v加入集合Vnew中,将<u, v>边加入集合Enew中;
4).输出:使用集合Vnew和Enew来描述所得到的最小生成树。
下面开始通过一个例子来看看这个图的最小生成树的具体生成过程:在这里插入图片描述
第一步:
初始的顶点集合V={A,B,C,D,E,F,G },Vnew = {x},其中x为集合V中的任一节点(起始点),Enew = {},为空;
列出图的所有的边的信息:
边-----------权值
<A,D> --------5
<C,E> --------5
<D,F> --------6
<B,E> --------7
<A,B> --------7
<B,C> --------8
<E,F> --------8
<D,B> --------9
<E,G> --------9
<F,G> --------11
<D,E> --------15

第二步:
以集合V任意一个顶点为Vnew新顶点集合中的第一个顶点元素,这里哦选顶点D为第一个:
Vnew ={D }
从V中除去顶点D
V={A,B,C,E,F,G }
可知.在集合E中选取权值最小的边<u, v>,其中u为集合Vnew中的元素,而v不在Vnew集合当中,并且v∈V(如果存在有多条满足前述条件即具有相同权值的边,则可任意选取其中之一),与顶点D相通的有F,B,A ,E这四个顶点,在这个四个顶点中找到与顶点D距离最近的点,
<A,D> --------5
<D,F> --------6
<D,B> --------9
<D,E> --------15
由上可知是顶点A距离顶点D的权值为5最近,则可从中选出最短的一条边<A,D>放入Enew中,则Enew={<A,D>},再将顶点A加入Vnew集合中,则
Vnew={D,A}
从V中除去顶点A
V={B,C,E,F,G }
Enew={<A,D>}
得到图:![在这里插入图片描述](https://img-blog.csdnimg.cn/20191022134130768.png
然后在顶点集合V={B,C,E,F,G }中再找到与 Vnew={D,A}中顶点最近的顶点
<D,F> --------6
<A,B> --------7
<D,B> --------9
<D,E> --------15
可知其中顶点F距离顶点D权值最小,距离最近,那么就将<D,F> --------6加入集合Enew中得到
Enew={<A,D>,<D,F>}
得到图:

再将顶点F加入Vnew中,得到
Vnew={D,A,F}
从V中除去顶点F
V={B,C,E,G }
然后在顶点集合V={B,C,E,G }中再找到与 Vnew={D,A,F}中顶点最近的顶点
<A,B> --------7
<E,F> --------8
<D,B> --------9
<F,G> --------11
<D,E> --------15
可知其中顶点B距离顶点A权值最小为6,距离最近,那么就将<A,B>加入集合Enew中得到
Enew={<A,D>,<D,F>,<A,B>}
得到图:
在这里插入图片描述
再将顶点B加入Vnew中,得到
Vnew={D,A,F,B}
从V中除去顶点B
V={C,E,G }
然后在顶点集合V={C,E,G }中再找到与 Vnew={D,A,F,B}中顶点最近的顶点
<B,E> --------7
<B,C> --------8
<E,F> --------8
<F,G> --------11
<D,E> --------15
可知其中顶点E距离顶点B权值最小为7,距离最近,那么就将<B,E>加入集合Enew中得到
Enew={<A,D>,<D,F>,<A,B>,<B,E>}
再将顶点E加入Vnew中,得到
Vnew={D,A,F,B,E}
得到图:
在这里插入图片描述
从V中除去顶点F
V={C,G }

然后在顶点集合V={C,G }中再找到与 Vnew={D,A,F,B,E}中顶点最近的顶点
<C,E> --------5
<B,C> --------8
<E,G> --------9
<F,G> --------11

可知其中顶点C距离顶点E权值最小为5,距离最近,那么就将<C,E>加入集合Enew中得到
Enew={<A,D>,<D,F>,<A,B>,<B,E>,<C,E>}
得到图:
在这里插入图片描述
再将顶点C加入Vnew中,得到
Vnew={D,A,F,B,E,C}

从V中除去顶点C
V={G }
最后从集合V={G }中再找到与 Vnew={D,A,F,B,E,C}中顶点最近的顶点
<E,G> --------9
<F,G> --------11

可知其中顶点G距离顶点E权值最小为9,距离最近,那么就将<E,G>加入集合Enew中得到
Enew={<A,D>,<D,F>,<A,B>,<B,E>,<C,E>,<E,G>}
得到图:
在这里插入图片描述
再将顶点G加入Vnew中,得到
Vnew={D,A,F,B,E,C,G}
从V中除去顶点G
V={}至此,所有的顶点都访问完毕,得到prim算法的最小生成图,其所有边为
<A,D>,<D,F>,<A,B>,<B,E>,<C,E>,<E,G>,节点的访问顺序为:
D–>A–>F–>B–>E–>C–>G
在此例中,最小生成树的权值之和为5+6+7+7+5+9 = 39。

下面我们又来看看kruskal算法的基本思路:
首先看kruskal算法的百度百科提供的基本思路:
先构造一个只含 n 个顶点、而边集为空的子图,把子图中各个顶点看成各棵树上的根结点,之后,从网的边集 E 中选取一条权值最小的边,若该条边的两个顶点分属不同的树,则将其加入子图,即把两棵树合成一棵树,反之,若该条边的两个顶点已落在同一棵树上,则不可取,而应该取下一条权值最小的边再试之。依次类推,直到森林中只有一棵树,也即子图中含有 n-1 条边为止。
算法实现的基本步骤:
第一步:新建图G,G中拥有原图中相同的节点,但没有边;
第二步:将原图中所有的边按权值从小到大排序;
第三步:从权值最小的边开始,如果这条边连接的两个节点于图G中不在同一个连通分量中,则添加这条边到图G中;
第四步:重复第三步,直至图G中所有的节点都在同一个连通分量中。

下面我们依旧是以上面的例子来进行对该算法的图解:

在这里插入图片描述

第一步:
构造包含所有节点的空图G:
在这里插入图片描述
第二步:
对所有的边进行从小到大的 排列:
<A,D> --------5
<C,E> --------5
<D,F> --------6
<B,E> --------7
<A,B> --------7
<B,C> --------8
<E,F> --------8
<D,B> --------9
<E,G> --------9
<F,G> --------11
<D,E> --------15
第三步:从所有边中选出权值最小的边加入图中,可知最小为<A,D>,<C,E>这两条边,这两条边都可以作为我们加入构造的空图中的第一条边,在这里选择 <A,D>这条边即可,得到新的图:

在这里插入图片描述

则剩下的边为:
<C,E> --------5
<D,F> --------6
<B,E> --------7
<A,B> --------7
<B,C> --------8
<E,F> --------8
<D,B> --------9
<E,G> --------9
<F,G> --------11
<D,E> --------15
在从中选出最小的边<C,E>,该边满足:这条边连接的两个节点于图G中不在同一个连通分量中,那么我们就可以将该边加入新的图得到:
在这里插入图片描述

则剩下的边为:
<D,F> --------6
<B,E> --------7
<A,B> --------7
<B,C> --------8
<E,F> --------8
<D,B> --------9
<E,G> --------9
<F,G> --------11
<D,E> --------15
在从中选出最小的边<D,F>,该边满足:这条边连接的两个节点于图G中不在同一个连通分量中,那么我们就可以将该边加入新的图得到:

在这里插入图片描述
则剩下的边为:
<B,E> --------7
<A,B> --------7
<B,C> --------8
<E,F> --------8
<D,B> --------9
<E,G> --------9
<F,G> --------11
<D,E> --------15
在从中选出最小的边<B,E>,<A,B>这两条边都满足:这条边连接的两个节点于图G中不在同一个连通分量中,那么我们就可以选择将其中一条边加入新的图得到,这里选择将<B,E> 加入新的图得到:
在这里插入图片描述

则剩下的边为:
<A,B> --------7
<B,C> --------8
<E,F> --------8
<D,B> --------9
<E,G> --------9
<F,G> --------11
<D,E> --------15
在从中选出最小的<A,B>,该边满足:这条边连接的两个节点于图G中不在同一个连通分量中, 加入新的图得到:
在这里插入图片描述
则剩下的边为:
<B,C> --------8
<E,F> --------8
<D,B> --------9
<E,G> --------9
<F,G> --------11
<D,E> --------15
在从中选出最小的边<B,C>,<E,F> 由于这两条边的两个顶点都在同一个连通分量上,所以这两条边都不满足:这条边连接的两个节点于图G中不在同一个连通分量中,不能加入到图G中,继续下一步 :
则剩下的边为:
<D,B> --------9
<E,G> --------9
<F,G> --------11
<D,E> --------15
在从中选出最小的边<D,B>,<E,G> ,其中<D,B>两个顶点都在同一个连通分量上,不满足条件,<E,G>则满足:这条边连接的两个节点于图G中不在同一个连通分量中,所以将<E,G>加入新的图得到:
在这里插入图片描述
则剩下的边为:
<D,B> --------9
<F,G> --------11
<D,E> --------15
经过查看,发现这些边均是两个顶点都在同一个连通分量中,所以均不符合加入到新图的条件,到此,一个完整的图的最小生成树就得到了。最终的图解为:
在这里插入图片描述
到此,prim算法和kruskal算法详解的讲解已经完成,剩下就是代码的实现了。至于代码实现的讲解,将在下一个博客文章中讲解。

这篇关于prim算法和kruskal算法详解的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1073429

相关文章

MySQL中的分组和多表连接详解

《MySQL中的分组和多表连接详解》:本文主要介绍MySQL中的分组和多表连接的相关操作,本文通过实例代码给大家介绍的非常详细,感兴趣的朋友一起看看吧... 目录mysql中的分组和多表连接一、MySQL的分组(group javascriptby )二、多表连接(表连接会产生大量的数据垃圾)MySQL中的

Java 实用工具类Spring 的 AnnotationUtils详解

《Java实用工具类Spring的AnnotationUtils详解》Spring框架提供了一个强大的注解工具类org.springframework.core.annotation.Annot... 目录前言一、AnnotationUtils 的常用方法二、常见应用场景三、与 JDK 原生注解 API 的

redis中使用lua脚本的原理与基本使用详解

《redis中使用lua脚本的原理与基本使用详解》在Redis中使用Lua脚本可以实现原子性操作、减少网络开销以及提高执行效率,下面小编就来和大家详细介绍一下在redis中使用lua脚本的原理... 目录Redis 执行 Lua 脚本的原理基本使用方法使用EVAL命令执行 Lua 脚本使用EVALSHA命令

SpringBoot3.4配置校验新特性的用法详解

《SpringBoot3.4配置校验新特性的用法详解》SpringBoot3.4对配置校验支持进行了全面升级,这篇文章为大家详细介绍了一下它们的具体使用,文中的示例代码讲解详细,感兴趣的小伙伴可以参考... 目录基本用法示例定义配置类配置 application.yml注入使用嵌套对象与集合元素深度校验开发

Python中的Walrus运算符分析示例详解

《Python中的Walrus运算符分析示例详解》Python中的Walrus运算符(:=)是Python3.8引入的一个新特性,允许在表达式中同时赋值和返回值,它的核心作用是减少重复计算,提升代码简... 目录1. 在循环中避免重复计算2. 在条件判断中同时赋值变量3. 在列表推导式或字典推导式中简化逻辑

Java Stream流使用案例深入详解

《JavaStream流使用案例深入详解》:本文主要介绍JavaStream流使用案例详解,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录前言1. Lambda1.1 语法1.2 没参数只有一条语句或者多条语句1.3 一个参数只有一条语句或者多

SpringBoot整合mybatisPlus实现批量插入并获取ID详解

《SpringBoot整合mybatisPlus实现批量插入并获取ID详解》这篇文章主要为大家详细介绍了SpringBoot如何整合mybatisPlus实现批量插入并获取ID,文中的示例代码讲解详细... 目录【1】saveBATch(一万条数据总耗时:2478ms)【2】集合方式foreach(一万条数

Python装饰器之类装饰器详解

《Python装饰器之类装饰器详解》本文将详细介绍Python中类装饰器的概念、使用方法以及应用场景,并通过一个综合详细的例子展示如何使用类装饰器,希望对大家有所帮助,如有错误或未考虑完全的地方,望不... 目录1. 引言2. 装饰器的基本概念2.1. 函数装饰器复习2.2 类装饰器的定义和使用3. 类装饰

MySQL 中的 JSON 查询案例详解

《MySQL中的JSON查询案例详解》:本文主要介绍MySQL的JSON查询的相关知识,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录mysql 的 jsON 路径格式基本结构路径组件详解特殊语法元素实际示例简单路径复杂路径简写操作符注意MySQL 的 J

Python ZIP文件操作技巧详解

《PythonZIP文件操作技巧详解》在数据处理和系统开发中,ZIP文件操作是开发者必须掌握的核心技能,Python标准库提供的zipfile模块以简洁的API和跨平台特性,成为处理ZIP文件的首选... 目录一、ZIP文件操作基础三板斧1.1 创建压缩包1.2 解压操作1.3 文件遍历与信息获取二、进阶技