代码随想录算法训练营Day42|1049.最后一块石头的重量II、494.目标和、474.一和零

本文主要是介绍代码随想录算法训练营Day42|1049.最后一块石头的重量II、494.目标和、474.一和零,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

最后一块石头的重量II

1049. 最后一块石头的重量 II - 力扣(LeetCode)

考虑昨天的能否将一个数组分为两个和相等的子集,本题有类似的思路,即将左右分为左右两个和相近的子集,然后返回其差值,这里使用动态规划的话。

DP数组含义,dp[j]表示能够达到的总重量为j的石头的最大重量

背包容量从0到1501(根据题目要求变化)

dp[j] = max(dp[j], dp[j-nums[i]] + nums[i]),j为重量,i为石头的选择与否。

遍历顺序同样物品遍历在外,背包遍历在内层,且内层倒序遍历。

最后考虑对最后一块石头重量的返回。考虑到dp[j]为其中一个子集所能抵达的最大重量,则另外一个子集的重量为总重量减去子集1的重量,要得到最后一块石头的重量,为两个子集和的相减值,最后的结果可以表示为sum -= 2*dp[j]。

class Solution {
public:int lastStoneWeightII(vector<int>& stones) {// 创建一个长度为1501,全0的数组dp,用于动态规划// dp[j]表示能够达到的总重量为j的石头的最大重量vector<int> dp(1501, 0);int sum = 0;// 计算stones数组中所有石头的总重量for (auto x : stones) {sum += x;}// 计算目标和,即分割后两堆石头的总重量应该接近sum/2const int target = sum / 2;for (int i = 0; i < stones.size(); i++) {// 从大到小遍历目标和及其以下的值for (int j = target; j >= stones[i]; j--) {// 更新dp[j],选取当前石头和不选取当前石头,取两种情况的最大值dp[j] = max(dp[j], dp[j - stones[i]] + stones[i]);}}// 最终结果为sum - dp[target]的两倍,因为dp[target]是接近sum/2的最大重量// 所以sum - dp[target]是另一堆石头的重量,两堆石头碰撞后剩下的最小重量就是它们的差return sum - 2 * dp[target];}
};

算法的时间复杂度为O(n^2),空间复杂度为O(n)。

目标和

494. 目标和 - 力扣(LeetCode)

动态规划之背包问题,装满背包有多少种方法?| LeetCode:494.目标和_哔哩哔哩_bilibili

得到目标和,需要在数字前面添加加号和减号,即存在两个数组我们假定为left数组和right数组,left数组中元素前全为加号,right数组中元素前全为减号。目标和为target,元素的所有和为sum。

sum_left + sum_right = target;

sum_left - sum_right = sum;

sum_left = (target + sum)/2,即我们能够得到left数组的和为target和元素和sum的一半。

使用动态规划算法来解决这个问题。

此时的dp[j]表示的是要装满容量为j的背包共有dp[j]种方式。

dp[j]:装满容量为j的背包有dp[j]种方式。

dp[j]的推导公式,这里需要牢记 dp[j]表示的是装满容量为j的背包的所有方式数量,所以dp[j]与dp[j-nums[j]]相关。即总容量为5,我们有一个质量为1的物品,则应该有dp[4]种方法能够得到5(1+4 = 5),若我们有一个质量为2的物品,应该有dp[3]种方法能够得到5(2+3 = 5 考虑之前的爬楼梯的题目),依次向下推,则dp[5] = dp[4] + dp[3] + dp[2] + dp[1] + dp[0]。

dp[j] += dp[j-nums[i]],此处为累加

dp[0]本应为0,但这里若初始为0,则所有dp均为0,所以初始化为1,非0下标初始化为0。

遍历顺序物品遍历在外,背包遍历在内层,且内层倒序遍历。

class Solution {
public:int findTargetSumWays(vector<int>& nums, int target) {int sum = 0;// 计算数组nums中所有数字的和for (auto x : nums) {sum += x;}// 如果(target + sum)是奇数,那么不可能通过添加+或-得到target,因为每添加一个-,总和就会减少两倍if ((target + sum) % 2 == 1) {return 0;}// 如果target的绝对值大于sum,那么也不可能得到target,leetcode有反例[100] target -200if (abs(target) > sum) {return 0;}// 计算我们需要的正数总和leftconst int left = (sum + target) / 2;// 初始化动态规划数组dp,大小为left+1,初值都为0,dp[j]表示总和为j的方法数vector<int> dp(left + 1, 0);// 总和为0的方法只有1种,即不选择任何数字dp[0] = 1;// 遍历数组nums中的每个数字for (int i = 0; i < nums.size(); i++) {// 从大到小遍历left及其以下的值for (int j = left; j >= nums[i]; j--) {// 更新dp[j],考虑选择当前数字和不选择当前数字的情况dp[j] += dp[j - nums[i]];}}// 返回总和为left的方法数,即dp[left]return dp[left];}
};

算法的时间复杂度为O(n^2),空间复杂度为O(n)。

一和零

474. 一和零 - 力扣(LeetCode)

本题还是一个01背包问题,虽然有两个维度。具体参考如下网站

代码随想录 (programmercarl.com)

动态规划之背包问题,装满这个背包最多用多少个物品?| LeetCode:474.一和零_哔哩哔哩_bilibili

我们需要装满m个0,n个1的背包,共2个维度,需要一个二维的dp数组,背包中最多有多少个物品,dp[i][j]即表示最多背的物品个数,即最后返回值为dp[m][n]。

dp[i][j] = max(dp[i][j-1],dp[i][j]) x和y分别表示物品i中有x个0,y个1,此处max中的dp[i][j]参考之前背包问题的滚动数组,做了压缩。

对dp数组进行初始化,dp[0][0] = 0,其余值也全赋值为0。同样参考之前背包问题的滚动数组,dp[i][j]的值在每次遍历过程中会被覆盖。

遍历顺序,先遍历物品,再遍历背包,且背包要倒序遍历。

class Solution {
public:int findMaxForm(vector<string>& strs, int m, int n) {// 初始化动态规划数组dp,大小为(m+1) x (n+1),初值都为0// dp[i][j]表示最多能组成多少个只包含0和1的字符串,且0的数量不超过i,1的数量不超过jvector<vector<int>> dp(m + 1, vector<int>(n + 1, 0));// 遍历数组strs中的每个字符串for (string str : strs) {int zero_count = 0; // 记录当前字符串中0的数量int one_count = 0;  // 记录当前字符串中1的数量// 遍历当前字符串中的每个字符for (auto c : str) {if (c == '0') {zero_count++;} else {one_count++;}}// 从大到小遍历m和n,更新dp数组for (int i = m; i >= zero_count; i--) {for (int j = n; j >= one_count; j--) {// 更新dp[i][j],考虑选择当前字符串和不选择当前字符串的情况dp[i][j] = max(dp[i - zero_count][j - one_count] + 1, dp[i][j]);}}}// 返回最多能组成只包含0和1的字符串的数量,即dp[m][n]return dp[m][n];}
};

算法的时间复杂度为O(m*n*k),k为strs的长度,外层遍历str数组中的每个字符串,共有strs.size()次迭代,k为strs数组的总长度,为strs.size()*每个数组中元素的平均长度L。

空间复杂度考虑需要维护一个二维dp数组,为O(m*n)。

这篇关于代码随想录算法训练营Day42|1049.最后一块石头的重量II、494.目标和、474.一和零的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1073009

相关文章

C#实现千万数据秒级导入的代码

《C#实现千万数据秒级导入的代码》在实际开发中excel导入很常见,现代社会中很容易遇到大数据处理业务,所以本文我就给大家分享一下千万数据秒级导入怎么实现,文中有详细的代码示例供大家参考,需要的朋友可... 目录前言一、数据存储二、处理逻辑优化前代码处理逻辑优化后的代码总结前言在实际开发中excel导入很

SpringBoot+RustFS 实现文件切片极速上传的实例代码

《SpringBoot+RustFS实现文件切片极速上传的实例代码》本文介绍利用SpringBoot和RustFS构建高性能文件切片上传系统,实现大文件秒传、断点续传和分片上传等功能,具有一定的参考... 目录一、为什么选择 RustFS + SpringBoot?二、环境准备与部署2.1 安装 RustF

Python实现Excel批量样式修改器(附完整代码)

《Python实现Excel批量样式修改器(附完整代码)》这篇文章主要为大家详细介绍了如何使用Python实现一个Excel批量样式修改器,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一... 目录前言功能特性核心功能界面特性系统要求安装说明使用指南基本操作流程高级功能技术实现核心技术栈关键函

Redis实现高效内存管理的示例代码

《Redis实现高效内存管理的示例代码》Redis内存管理是其核心功能之一,为了高效地利用内存,Redis采用了多种技术和策略,如优化的数据结构、内存分配策略、内存回收、数据压缩等,下面就来详细的介绍... 目录1. 内存分配策略jemalloc 的使用2. 数据压缩和编码ziplist示例代码3. 优化的

Python 基于http.server模块实现简单http服务的代码举例

《Python基于http.server模块实现简单http服务的代码举例》Pythonhttp.server模块通过继承BaseHTTPRequestHandler处理HTTP请求,使用Threa... 目录测试环境代码实现相关介绍模块简介类及相关函数简介参考链接测试环境win11专业版python

Python从Word文档中提取图片并生成PPT的操作代码

《Python从Word文档中提取图片并生成PPT的操作代码》在日常办公场景中,我们经常需要从Word文档中提取图片,并将这些图片整理到PowerPoint幻灯片中,手动完成这一任务既耗时又容易出错,... 目录引言背景与需求解决方案概述代码解析代码核心逻辑说明总结引言在日常办公场景中,我们经常需要从 W

使用Spring Cache本地缓存示例代码

《使用SpringCache本地缓存示例代码》缓存是提高应用程序性能的重要手段,通过将频繁访问的数据存储在内存中,可以减少数据库访问次数,从而加速数据读取,:本文主要介绍使用SpringCac... 目录一、Spring Cache简介核心特点:二、基础配置1. 添加依赖2. 启用缓存3. 缓存配置方案方案

MySQL的配置文件详解及实例代码

《MySQL的配置文件详解及实例代码》MySQL的配置文件是服务器运行的重要组成部分,用于设置服务器操作的各种参数,下面:本文主要介绍MySQL配置文件的相关资料,文中通过代码介绍的非常详细,需要... 目录前言一、配置文件结构1.[mysqld]2.[client]3.[mysql]4.[mysqldum

Python多线程实现大文件快速下载的代码实现

《Python多线程实现大文件快速下载的代码实现》在互联网时代,文件下载是日常操作之一,尤其是大文件,然而,网络条件不稳定或带宽有限时,下载速度会变得很慢,本文将介绍如何使用Python实现多线程下载... 目录引言一、多线程下载原理二、python实现多线程下载代码说明:三、实战案例四、注意事项五、总结引

IDEA与MyEclipse代码量统计方式

《IDEA与MyEclipse代码量统计方式》文章介绍在项目中不安装第三方工具统计代码行数的方法,分别说明MyEclipse通过正则搜索(排除空行和注释)及IDEA使用Statistic插件或调整搜索... 目录项目场景MyEclipse代码量统计IDEA代码量统计总结项目场景在项目中,有时候我们需要统计