如何通过编程获取桌面分辨率、操作像素点颜色、保存位图和JPG格式图片,以及图片数据的处理和存储方式

本文主要是介绍如何通过编程获取桌面分辨率、操作像素点颜色、保存位图和JPG格式图片,以及图片数据的处理和存储方式,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本节课在线学习视频(网盘地址,保存后即可免费观看):

​​https://pan.quark.cn/s/c474d087e76f​​

在图形编程中,获取桌面分辨率、操作像素点颜色、保存和处理图片数据是常见任务。本文将介绍如何通过编程实现这些操作,并提供多个代码案例展示具体实现方法。

1. 获取桌面分辨率

获取桌面分辨率是许多图形应用程序的基本需求。我们可以使用 Windows API 来获取桌面分辨率。

案例1:获取桌面分辨率

#include <windows.h>
#include <iostream>int main() {// 获取屏幕分辨率int screenWidth = GetSystemMetrics(SM_CXSCREEN);int screenHeight = GetSystemMetrics(SM_CYSCREEN);std::cout << "Screen Resolution: " << screenWidth << "x" << screenHeight << std::endl;return 0;
}

在这个例子中,使用 ​​GetSystemMetrics​​ 函数获取屏幕的宽度 (​​SM_CXSCREEN​​) 和高度 (​​SM_CYSCREEN​​),并输出屏幕分辨率。

2. 操作像素点颜色

操作像素点颜色通常用于图像处理和计算机视觉。我们可以使用 GDI(图形设备接口)来操作像素点颜色。

案例2:操作像素点颜色

#include <windows.h>
#include <iostream>int main() {// 获取屏幕设备上下文HDC hdcScreen = GetDC(NULL);// 获取特定像素的颜色COLORREF color = GetPixel(hdcScreen, 100, 100);BYTE red = GetRValue(color);BYTE green = GetGValue(color);BYTE blue = GetBValue(color);std::cout << "Pixel color at (100, 100): " << "R=" << (int)red << " G=" << (int)green << " B=" << (int)blue << std::endl;// 设置特定像素的颜色SetPixel(hdcScreen, 100, 100, RGB(255, 0, 0));// 释放设备上下文ReleaseDC(NULL, hdcScreen);return 0;
}

在这个例子中,使用 ​​GetPixel​​ 函数获取屏幕上 (100, 100) 位置像素的颜色,并使用 ​​SetPixel​​ 函数将该像素设置为红色。

3. 保存位图和JPG格式图片

保存图片是图形编程中的重要任务。我们可以使用 GDI+ 库来保存位图和 JPG 格式的图片。

案例3:保存位图图片

#include <windows.h>
#include <gdiplus.h>
#include <iostream>#pragma comment (lib,"Gdiplus.lib")int main() {// 初始化 GDI+Gdiplus::GdiplusStartupInput gdiplusStartupInput;ULONG_PTR gdiplusToken;Gdiplus::GdiplusStartup(&gdiplusToken, &gdiplusStartupInput, NULL);// 创建位图Gdiplus::Bitmap bitmap(200, 200, PixelFormat32bppARGB);Gdiplus::Graphics graphics(&bitmap);// 绘制一个红色矩形Gdiplus::SolidBrush redBrush(Gdiplus::Color(255, 255, 0, 0));graphics.FillRectangle(&redBrush, 50, 50, 100, 100);// 保存为 BMP 格式CLSID clsidBmp;CLSIDFromString(L"{557CF400-1A04-11D3-9A73-0000F81EF32E}", &clsidBmp);bitmap.Save(L"output.bmp", &clsidBmp, NULL);// 关闭 GDI+Gdiplus::GdiplusShutdown(gdiplusToken);std::cout << "Bitmap image saved as output.bmp" << std::endl;return 0;
}

在这个例子中,我们使用 GDI+ 库创建一个位图,绘制一个红色矩形,并将其保存为 BMP 格式。

案例4:保存JPG格式图片

#include <windows.h>
#include <gdiplus.h>
#include <iostream>#pragma comment (lib,"Gdiplus.lib")int main() {// 初始化 GDI+Gdiplus::GdiplusStartupInput gdiplusStartupInput;ULONG_PTR gdiplusToken;Gdiplus::GdiplusStartup(&gdiplusToken, &gdiplusStartupInput, NULL);// 创建位图Gdiplus::Bitmap bitmap(200, 200, PixelFormat32bppARGB);Gdiplus::Graphics graphics(&bitmap);// 绘制一个蓝色矩形Gdiplus::SolidBrush blueBrush(Gdiplus::Color(255, 0, 0, 255));graphics.FillRectangle(&blueBrush, 50, 50, 100, 100);// 保存为 JPG 格式CLSID clsidJpg;CLSIDFromString(L"{557CF401-1A04-11D3-9A73-0000F81EF32E}", &clsidJpg);bitmap.Save(L"output.jpg", &clsidJpg, NULL);// 关闭 GDI+Gdiplus::GdiplusShutdown(gdiplusToken);std::cout << "JPEG image saved as output.jpg" << std::endl;return 0;
}

在这个例子中,我们使用 GDI+ 库创建一个位图,绘制一个蓝色矩形,并将其保存为 JPG 格式。

4. 图片数据的处理和存储方式

图片数据的处理和存储在图像处理和计算机视觉中非常重要。我们可以使用位图(Bitmap)数据进行操作。

案例5:处理和存储位图数据

#include <windows.h>
#include <gdiplus.h>
#include <iostream>
#include <vector>#pragma comment (lib,"Gdiplus.lib")void SaveBitmapData(const std::vector<BYTE>& bitmapData, int width, int height) {BITMAPFILEHEADER fileHeader;BITMAPINFOHEADER infoHeader;// 填充文件头fileHeader.bfType = 0x4D42; // 'BM'fileHeader.bfSize = sizeof(BITMAPFILEHEADER) + sizeof(BITMAPINFOHEADER) + bitmapData.size();fileHeader.bfReserved1 = 0;fileHeader.bfReserved2 = 0;fileHeader.bfOffBits = sizeof(BITMAPFILEHEADER) + sizeof(BITMAPINFOHEADER);// 填充信息头infoHeader.biSize = sizeof(BITMAPINFOHEADER);infoHeader.biWidth = width;infoHeader.biHeight = height;infoHeader.biPlanes = 1;infoHeader.biBitCount = 24;infoHeader.biCompression = BI_RGB;infoHeader.biSizeImage = 0;infoHeader.biXPelsPerMeter = 0;infoHeader.biYPelsPerMeter = 0;infoHeader.biClrUsed = 0;infoHeader.biClrImportant = 0;// 将数据保存到文件FILE* file = fopen("output_data.bmp", "wb");if (file != NULL) {fwrite(&fileHeader, sizeof(BITMAPFILEHEADER), 1, file);fwrite(&infoHeader, sizeof(BITMAPINFOHEADER), 1, file);fwrite(bitmapData.data(), 1, bitmapData.size(), file);fclose(file);std::cout << "Bitmap data saved to output_data.bmp" << std::endl;} else {std::cerr << "Failed to save bitmap data" << std::endl;}
}int main() {// 初始化 GDI+Gdiplus::GdiplusStartupInput gdiplusStartupInput;ULONG_PTR gdiplusToken;Gdiplus::GdiplusStartup(&gdiplusToken, &gdiplusStartupInput, NULL);// 创建位图int width = 200;int height = 200;Gdiplus::Bitmap bitmap(width, height, PixelFormat24bppRGB);Gdiplus::Graphics graphics(&bitmap);// 绘制一个绿色矩形Gdiplus::SolidBrush greenBrush(Gdiplus::Color(255, 0, 255, 0));graphics.FillRectangle(&greenBrush, 50, 50, 100, 100);// 提取位图数据Gdiplus::BitmapData bitmapData;Gdiplus::Rect rect(0, 0, width, height);bitmap.LockBits(&rect, Gdiplus::ImageLockModeRead, PixelFormat24bppRGB, &bitmapData);// 将位图数据保存到 vectorstd::vector<BYTE> data(bitmapData.Stride * height);memcpy(data.data(), bitmapData.Scan0, data.size());// 解锁位图bitmap.UnlockBits(&bitmapData);// 将数据保存到文件SaveBitmapData(data, width, height);// 关闭 GDI+Gdiplus::GdiplusShutdown(gdiplusToken);return 0;
}

在这个例子中,我们通过 ​​LockBits​​​ 方法提取位图数据,并将其存储到一个 ​​vector<BYTE>​​​ 中。然后,我们调用 ​​SaveBitmapData​​​ 函数将数据保存到 BMP 文件中。​​SaveBitmapData​​ 函数创建 BMP 文件头和信息头,并将位图数据写入到文件。

5. 图片数据的处理和存储

图片数据的处理和存储方式在图像处理中至关重要。我们可以使用不同的库和技术来处理和存储图片数据,例如 OpenCV 或 GDI+。

案例6:使用 OpenCV 处理和存储图片

OpenCV 是一个强大的计算机视觉库,提供了丰富的图像处理功能。

#include <opencv2/opencv.hpp>
#include <iostream>int main() {// 创建一个空白图像cv::Mat image = cv::Mat::zeros(cv::Size(200, 200), CV_8UC3);// 绘制一个红色矩形cv::rectangle(image, cv::Point(50, 50), cv::Point(150, 150), cv::Scalar(0, 0, 255), -1);// 保存为 BMP 格式cv::imwrite("output_opencv.bmp", image);// 保存为 JPG 格式cv::imwrite("output_opencv.jpg", image);// 显示图像cv::imshow("Image", image);cv::waitKey(0);std::cout << "Image saved as output_opencv.bmp and output_opencv.jpg" << std::endl;return 0;
}

在这个例子中,我们使用 OpenCV 创建一个空白图像,并绘制一个红色矩形。然后,我们将图像保存为 BMP 和 JPG 格式,并显示图像。OpenCV 的 ​​imwrite​​ 函数使得保存图像变得非常简单。

案例7:图片数据的存储和读取

我们可以使用 OpenCV 读取和存储图片数据,并进行进一步处理。

#include <opencv2/opencv.hpp>
#include <iostream>
#include <vector>int main() {// 读取图像cv::Mat image = cv::imread("output_opencv.jpg");if (image.empty()) {std::cerr << "Failed to load image" << std::endl;return -1;}// 提取图像数据std::vector<uchar> imageData;if (image.isContinuous()) {imageData.assign(image.datastart, image.dataend);} else {for (int i = 0; i < image.rows; ++i) {imageData.insert(imageData.end(), image.ptr<uchar>(i), image.ptr<uchar>(i) + image.cols * image.channels());}}// 将图像数据保存到文件FILE* file = fopen("output_image_data.dat", "wb");if (file != NULL) {fwrite(imageData.data(), 1, imageData.size(), file);fclose(file);std::cout << "Image data saved to output_image_data.dat" << std::endl;} else {std::cerr << "Failed to save image data" << std::endl;}return 0;
}

在这个例子中,我们使用 OpenCV 读取图像,并提取图像数据到一个 ​​vector<uchar>​​ 中。然后,我们将图像数据保存到一个二进制文件 ​​output_image_data.dat​​ 中。通过这种方式,我们可以存储原始图像数据,方便后续处理和分析。

6. 总结

本文详细介绍了如何通过编程获取桌面分辨率、操作像素点颜色、保存位图和 JPG 格式图片,以及图片数据的处理和存储方式。通过这些案例,希望能够帮助你更好地理解和应用图形编程中的各种技术。

主要点总结:

  1. 获取桌面分辨率:使用 ​​GetSystemMetrics​​ 获取屏幕分辨率。
  2. 操作像素点颜色:使用 GDI 的 ​​GetPixel​​ 和 ​​SetPixel​​ 函数操作像素点颜色。
  3. 保存位图和 JPG 格式图片:使用 GDI+ 库保存图片;使用 OpenCV 库简化图片处理。
  4. 图片数据的处理和存储:提取位图数据并保存到文件;使用 OpenCV 读取、处理和存储图片数据。

通过合理运用这些技术,可以大大提高图形编程的效率和代码的可维护性。在实际开发中,选择合适的库和方法,根据具体需求进行优化和改进,将能够显著提升图形应用程序的性能和用户体验。

这篇关于如何通过编程获取桌面分辨率、操作像素点颜色、保存位图和JPG格式图片,以及图片数据的处理和存储方式的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1072893

相关文章

gradle第三方Jar包依赖统一管理方式

《gradle第三方Jar包依赖统一管理方式》:本文主要介绍gradle第三方Jar包依赖统一管理方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录背景实现1.顶层模块build.gradle添加依赖管理插件2.顶层模块build.gradle添加所有管理依赖包

使用Java将各种数据写入Excel表格的操作示例

《使用Java将各种数据写入Excel表格的操作示例》在数据处理与管理领域,Excel凭借其强大的功能和广泛的应用,成为了数据存储与展示的重要工具,在Java开发过程中,常常需要将不同类型的数据,本文... 目录前言安装免费Java库1. 写入文本、或数值到 Excel单元格2. 写入数组到 Excel表格

Java并发编程之如何优雅关闭钩子Shutdown Hook

《Java并发编程之如何优雅关闭钩子ShutdownHook》这篇文章主要为大家详细介绍了Java如何实现优雅关闭钩子ShutdownHook,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起... 目录关闭钩子简介关闭钩子应用场景数据库连接实战演示使用关闭钩子的注意事项开源框架中的关闭钩子机制1.

Python中pywin32 常用窗口操作的实现

《Python中pywin32常用窗口操作的实现》本文主要介绍了Python中pywin32常用窗口操作的实现,pywin32主要的作用是供Python开发者快速调用WindowsAPI的一个... 目录获取窗口句柄获取最前端窗口句柄获取指定坐标处的窗口根据窗口的完整标题匹配获取句柄根据窗口的类别匹配获取句

Linux之systemV共享内存方式

《Linux之systemV共享内存方式》:本文主要介绍Linux之systemV共享内存方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、工作原理二、系统调用接口1、申请共享内存(一)key的获取(二)共享内存的申请2、将共享内存段连接到进程地址空间3、将

Maven中引入 springboot 相关依赖的方式(最新推荐)

《Maven中引入springboot相关依赖的方式(最新推荐)》:本文主要介绍Maven中引入springboot相关依赖的方式(最新推荐),本文给大家介绍的非常详细,对大家的学习或工作具有... 目录Maven中引入 springboot 相关依赖的方式1. 不使用版本管理(不推荐)2、使用版本管理(推

Java 中的 @SneakyThrows 注解使用方法(简化异常处理的利与弊)

《Java中的@SneakyThrows注解使用方法(简化异常处理的利与弊)》为了简化异常处理,Lombok提供了一个强大的注解@SneakyThrows,本文将详细介绍@SneakyThro... 目录1. @SneakyThrows 简介 1.1 什么是 Lombok?2. @SneakyThrows

在 Spring Boot 中实现异常处理最佳实践

《在SpringBoot中实现异常处理最佳实践》本文介绍如何在SpringBoot中实现异常处理,涵盖核心概念、实现方法、与先前查询的集成、性能分析、常见问题和最佳实践,感兴趣的朋友一起看看吧... 目录一、Spring Boot 异常处理的背景与核心概念1.1 为什么需要异常处理?1.2 Spring B

python处理带有时区的日期和时间数据

《python处理带有时区的日期和时间数据》这篇文章主要为大家详细介绍了如何在Python中使用pytz库处理时区信息,包括获取当前UTC时间,转换为特定时区等,有需要的小伙伴可以参考一下... 目录时区基本信息python datetime使用timezonepandas处理时区数据知识延展时区基本信息

Python位移操作和位运算的实现示例

《Python位移操作和位运算的实现示例》本文主要介绍了Python位移操作和位运算的实现示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录1. 位移操作1.1 左移操作 (<<)1.2 右移操作 (>>)注意事项:2. 位运算2.1