007、绘制数据plt.plot

2024-06-18 13:04
文章标签 数据 绘制 007 plot plt

本文主要是介绍007、绘制数据plt.plot,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

plt.plot 是 Matplotlib 中最常用的函数之一,用于绘制线形图。该函数非常灵活,可以通过各种参数自定义图形的外观。下面将深入讲解 plt.plot 的使用,并通过多个例子展示其功能。

理论概述

plt.plot 的基本语法:

plt.plot(x, y, format_string, **kwargs)
  • x:x 轴数据。
  • y:y 轴数据。
  • format_string:可选,指定线条颜色、标记和线型的格式字符串(如 'r*--')。
  • **kwargs:可选,用于设置线条属性的关键字参数。

format_string 详解

  • 颜色(color):可以使用单个字母表示颜色,如 ‘r’(红色)、‘b’(蓝色)、‘g’(绿色)、‘k’(黑色)等。
  • 标记(marker):用于表示数据点的标记样式,如 ‘*’(星号)、‘o’(圆圈)、‘s’(方块)等。
  • 线型(linestyle):用于指定线条样式,如 ‘-’(实线)、‘–’(虚线)、‘-.’(点划线)、‘:’(点线)等。

实际例子

示例1:基本线形图
import matplotlib.pyplot as pltx = range(1, 11)
y = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29]plt.plot(x, y)
plt.title('基本线形图')
plt.xlabel('X轴')
plt.ylabel('Y轴')
plt.show()
示例2:使用格式字符串自定义图形
import matplotlib.pyplot as pltx = range(1, 11)
y1 = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29]
y2 = [1, 4, 9, 16, 25, 36, 49, 64, 81, 100]plt.plot(x, y1, 'r*--', label='质数')
plt.plot(x, y2, 'bo-', label='平方数')
plt.title('自定义格式的线形图')
plt.xlabel('X轴')
plt.ylabel('Y轴')
plt.legend()
plt.show()
示例3:使用关键字参数自定义图形
import matplotlib.pyplot as pltx = range(1, 11)
y1 = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29] 
y2 = [1, 4, 9, 16, 25, 36, 49, 64, 81, 100]plt.plot(x, y1, color='red', marker='*', linestyle='--', label='质数')
plt.plot(x, y2, color='blue', marker='o', linestyle='-', label='平方数')
plt.title('使用关键字参数的线形图')
plt.xlabel('X轴')
plt.ylabel('Y轴')
plt.legend()
plt.show()
示例4:绘制带有误差棒的图形
import matplotlib.pyplot as plt
import numpy as npx = np.linspace(0, 10, 10)
y = np.sin(x)
yerr = 0.2plt.errorbar(x, y, yerr=yerr, fmt='o-', ecolor='red', capsize=5)
plt.title('带有误差棒的线形图')
plt.xlabel('X轴')
plt.ylabel('Y轴')
plt.show()
示例5:绘制多条线并使用不同的样式
import matplotlib.pyplot as pltx = range(1, 11)
y1 = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29]
y2 = [1, 4, 9, 16, 25, 36, 49, 64, 81, 100] 
y3 = [1, 8, 27, 64, 125, 216, 343, 512, 729, 1000]plt.plot(x, y1, 'r*--', label='质数')
plt.plot(x, y2, 'bo-', label='平方数')
plt.plot(x, y3, 'gs-.', label='立方数')
plt.title('多条线形图')
plt.xlabel('X轴')
plt.ylabel('Y轴')
plt.legend()
plt.show()
示例6:使用不同的线宽和标记大小
import matplotlib.pyplot as pltx = range(1, 11)
y1 = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29]
y2 = [1, 4, 9, 16, 25, 36, 49, 64, 81, 100]plt.plot(x, y1, 'r*--', linewidth=2, markersize=10, label='质数')
plt.plot(x, y2, 'bo-', linewidth=4, markersize=5, label='平方数') 
plt.title('使用不同线宽和标记大小的线形图')
plt.xlabel('X轴')
plt.ylabel('Y轴')
plt.legend()
plt.show()
示例7:绘制对数坐标轴的图形
import matplotlib.pyplot as pltx = range(1, 11)
y = [10, 100, 1000, 10000, 100000, 1000000, 10000000, 100000000, 1000000000, 10000000000]plt.plot(x, y, 'g*-')
plt.yscale('log')
plt.title('对数坐标轴的线形图')
plt.xlabel('X轴')
plt.ylabel('Y轴(对数)')
plt.show()
示例8:自定义图例位置和样式
import matplotlib.pyplot as pltx = range(1, 11)
y1 = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29]
y2 = [1, 4, 9, 16, 25, 36, 49, 64, 81, 100]plt.plot(x, y1, 'r*--', label='质数')
plt.plot(x, y2, 'bo-', label='平方数')
plt.title('自定义图例位置和样式')
plt.xlabel('X轴')
plt.ylabel('Y轴')
plt.legend(loc='upper left', fontsize='large', shadow=True)
plt.show()

其他常用参数

除了 format_string 之外,plt.plot 还支持许多其他参数,用于调整图形细节:

  • linewidth/lw:线宽。
  • markersize/ms:标记大小。
  • markeredgecolor/mec:标记边缘颜色。
  • markerfacecolor/mfc:标记填充颜色
  • markeredgewidth/mew:标记边缘线宽
  • alpha:透明度,0到1之间的浮点数
  • zorder:绘制顺序,数值越大绘制越在上层
  • label:图例标签
  • linestyle/ls:同 format_string 中的 linestyle

设置坐标轴范围和比例

通过一些特殊参数,我们还可以控制坐标轴的范围和比例尺度:

  • xlim/ylim:设置 x/y 轴的数据显示范围
  • xscale/yscale:设置 x/y 轴的刻度规则,如线性(linear)、对数(log)等
  • xticks/yticks:设置 x/y 轴应显示的刻度位置

示例:

import matplotlib.pyplot as plt
import numpy as npx = np.linspace(-10, 10, 100)
y = x**2plt.plot(x, y)
plt.xlim([-5, 5])  # 设置 x 轴显示范围
plt.ylim([0, 30])  # 设置 y 轴显示范围 
plt.xscale('symlog', linthresh=0.01)  # 对数坐标轴,但在 0 附近使用线性比例
plt.xticks([-5, -1, 0, 1, 5])  # 自定义 x 轴刻度
plt.title('自定义坐标轴范围和比例')
plt.show()

多子图布局

plt.subplot可以将图形区域分割成多个子区域,每个子区域中可绘制不同的图形。它的语法是:

plt.subplot(nrows, ncols, index)
  • nrows:子图的行数
  • ncols:子图的列数
  • index:子图的索引,从1开始递增

示例:

import matplotlib.pyplot as plt
import numpy as npx = np.linspace(-2*np.pi, 2*np.pi, 100)
y1 = np.sin(x)
y2 = np.cos(x)plt.figure(figsize=(8, 4))
plt.subplot(1, 2, 1)  # 1行2列,第1个子图
plt.plot(x, y1)
plt.title('Sine Wave')plt.subplot(1, 2, 2)  # 1行2列,第2个子图 
plt.plot(x, y2, 'r--')
plt.title('Cosine Wave')plt.tight_layout()
plt.show()

除了subplot之外,matplotlib还提供了subplot2gridgridspec.GridSpec等更灵活的子图布局方式。

图形输出

plt.savefig可以将当前图形保存为文件,支持多种格式如PNG、JPG、EPS、SVG等:

plt.savefig('figure.png', dpi=300, bbox_inches='tight')

其中dpi设置输出分辨率,bbox_inches控制输出时是否剪裁掉图形周围的空白区域。

交互式可视化

除了静态的图像输出,Matplotlib 还支持交互式的数据可视化。我们可以使用 plt.ion() 打开交互模式,然后使用 plt.show(block=False) 不阻塞地显示图形。

在交互模式下,我们可以动态更新图形内容,实现实时数据可视化等功能。示例:

import matplotlib.pyplot as plt
import numpy as npplt.ion()  # 打开交互模式fig, ax = plt.subplots()
ln, = ax.plot([], [], 'r-')  # 创建初始化的空线条ax.set_xlim(0, 10)
ax.set_ylim(-1, 1)x = np.linspace(0, 10, 100)for i in range(100):y = np.sin(x + i/10)ln.set_data(x, y)fig.canvas.draw()fig.canvas.flush_events()plt.ioff()  # 关闭交互模式

该示例会实时绘制一条正弦波,波形随时间推移而移动。

plt.ginput则允许用户在图形上点击鼠标进行交互,常用于标记数据点等功能。

使用 OO 接口自定义图形

Matplotlib 不仅提供了像 plt.plot 这样的快捷函数接口,也支持面向对象编程风格。通过显式创建 Figure 和 Axes 对象,并使用相应的方法,我们可以实现更细粒度的图形自定义。

import matplotlib.pyplot as plt
import numpy as npx = np.linspace(-np.pi, np.pi, 100)
y1 = np.sin(x)
y2 = np.cos(x)# 创建 Figure 和 Axes 对象
fig, (ax1, ax2) = plt.subplots(2, 1, figsize=(6, 6))# 使用对象方法设置属性
ax1.plot(x, y1, 'b-')
ax1.set_title('Sine Wave')
ax1.set_ylim([-1.5, 1.5])ax2.plot(x, y2, 'r--')
ax2.set_title('Cosine Wave')
ax2.set_ylim([-1.5, 1.5])fig.tight_layout()
plt.show()

使用 OO 接口可以更灵活地控制图形元素,但代码也会变得更加冗长。在简单的场景下,使用快捷函数接口就可以了,但在需要高度自定义时,OO 接口会更加有用。

自定义 Colormap

Colormap 用于将数值数据映射到颜色值,对于可视化大量数据非常有用。Matplotlib 内置了多种 colormap,也支持自定义颜色映射。

内置的 colormap 可以通过 plt.cm.名称 访问,例如 plt.cm.viridis 是一种很流行的 colormap。

我们可以通过指定颜色列表来定义新的 colormap:

import matplotlib.pyplot as plt
import numpy as np# 自定义 colormap
cmap = plt.colormaps['viridis']
my_cmap = cmap.from_list('my_cmap', ['navy', 'royalblue', 'skyblue', 'lime'])data = np.random.randn(30, 30)
fig, ax = plt.subplots()
im = ax.imshow(data, cmap=my_cmap)
fig.colorbar(im)
plt.show()

该示例创建了一个新的 colormap my_cmap,包含了从深蓝到浅绿的四种颜色。然后使用该 colormap 可视化二维数据。

plt.colormaps.register 还允许我们将自定义的 colormap 注册到 Matplotlib 中,以供全局访问。

自定义 Colorbar

Colorbar 可以将数据值和颜色直观地关联起来。我们可以使用 plt.colorbar 或者 fig.colorbar(im) 显示 colorbar。

也可以通过参数对 colorbar 进行自定义,如修改尺寸、位置、刻度值和标签等:

import matplotlib.pyplot as plt
import numpy as npdata = np.random.randn(30, 30)
fig, ax = plt.subplots(figsize=(6, 4))
im = ax.imshow(data, cmap='RdBu')# 自定义 colorbar
cbar = fig.colorbar(im, ax=ax, orientation='horizontal', shrink=0.6, pad=0.05)
cbar.set_label('Data Values', fontsize=12)
cbar.set_ticks([-2, -1, 0, 1, 2])
cbar.ax.tick_params(labelsize=10)plt.show()

这个例子创建了一个水平放置的 colorbar,调整了它的大小和填充,并自定义了标签和刻度值。

总的来说,Matplotlib 提供了全面的工具来自定义 colormap 和 colorbar,使数据可视化更加清晰和富有吸引力。

这篇关于007、绘制数据plt.plot的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1072064

相关文章

Java注解之超越Javadoc的元数据利器详解

《Java注解之超越Javadoc的元数据利器详解》本文将深入探讨Java注解的定义、类型、内置注解、自定义注解、保留策略、实际应用场景及最佳实践,无论是初学者还是资深开发者,都能通过本文了解如何利用... 目录什么是注解?注解的类型内置注编程解自定义注解注解的保留策略实际用例最佳实践总结在 Java 编程

Python使用Matplotlib绘制3D曲面图详解

《Python使用Matplotlib绘制3D曲面图详解》:本文主要介绍Python使用Matplotlib绘制3D曲面图,在Python中,使用Matplotlib库绘制3D曲面图可以通过mpl... 目录准备工作绘制简单的 3D 曲面图绘制 3D 曲面图添加线框和透明度控制图形视角Matplotlib

Pandas中统计汇总可视化函数plot()的使用

《Pandas中统计汇总可视化函数plot()的使用》Pandas提供了许多强大的数据处理和分析功能,其中plot()函数就是其可视化功能的一个重要组成部分,本文主要介绍了Pandas中统计汇总可视化... 目录一、plot()函数简介二、plot()函数的基本用法三、plot()函数的参数详解四、使用pl

一文教你Python如何快速精准抓取网页数据

《一文教你Python如何快速精准抓取网页数据》这篇文章主要为大家详细介绍了如何利用Python实现快速精准抓取网页数据,文中的示例代码简洁易懂,具有一定的借鉴价值,有需要的小伙伴可以了解下... 目录1. 准备工作2. 基础爬虫实现3. 高级功能扩展3.1 抓取文章详情3.2 保存数据到文件4. 完整示例

使用Java将各种数据写入Excel表格的操作示例

《使用Java将各种数据写入Excel表格的操作示例》在数据处理与管理领域,Excel凭借其强大的功能和广泛的应用,成为了数据存储与展示的重要工具,在Java开发过程中,常常需要将不同类型的数据,本文... 目录前言安装免费Java库1. 写入文本、或数值到 Excel单元格2. 写入数组到 Excel表格

python处理带有时区的日期和时间数据

《python处理带有时区的日期和时间数据》这篇文章主要为大家详细介绍了如何在Python中使用pytz库处理时区信息,包括获取当前UTC时间,转换为特定时区等,有需要的小伙伴可以参考一下... 目录时区基本信息python datetime使用timezonepandas处理时区数据知识延展时区基本信息

Qt实现网络数据解析的方法总结

《Qt实现网络数据解析的方法总结》在Qt中解析网络数据通常涉及接收原始字节流,并将其转换为有意义的应用层数据,这篇文章为大家介绍了详细步骤和示例,感兴趣的小伙伴可以了解下... 目录1. 网络数据接收2. 缓冲区管理(处理粘包/拆包)3. 常见数据格式解析3.1 jsON解析3.2 XML解析3.3 自定义

SpringMVC 通过ajax 前后端数据交互的实现方法

《SpringMVC通过ajax前后端数据交互的实现方法》:本文主要介绍SpringMVC通过ajax前后端数据交互的实现方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价... 在前端的开发过程中,经常在html页面通过AJAX进行前后端数据的交互,SpringMVC的controll

Pandas统计每行数据中的空值的方法示例

《Pandas统计每行数据中的空值的方法示例》处理缺失数据(NaN值)是一个非常常见的问题,本文主要介绍了Pandas统计每行数据中的空值的方法示例,具有一定的参考价值,感兴趣的可以了解一下... 目录什么是空值?为什么要统计空值?准备工作创建示例数据统计每行空值数量进一步分析www.chinasem.cn处

如何使用 Python 读取 Excel 数据

《如何使用Python读取Excel数据》:本文主要介绍使用Python读取Excel数据的详细教程,通过pandas和openpyxl,你可以轻松读取Excel文件,并进行各种数据处理操... 目录使用 python 读取 Excel 数据的详细教程1. 安装必要的依赖2. 读取 Excel 文件3. 读