智能优化算法应用:麻雀算法优化脉冲耦合神经网络的图像自动分割 -附代码

本文主要是介绍智能优化算法应用:麻雀算法优化脉冲耦合神经网络的图像自动分割 -附代码,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

智能优化算法应用:麻雀算法优化脉冲耦合神经网络的图像自动分割

文章目录

  • 智能优化算法应用:麻雀算法优化脉冲耦合神经网络的图像自动分割
    • 1.麻雀搜索算法
    • 2.PCNN网络
    • 3.实验结果
    • 4.参考文献
    • 5.Matlab代码

摘要:本文利用麻雀搜索算法对脉冲耦合神经网络的参数进行优化,以信息熵作为适应度函数,提高其图像分割的性能。

1.麻雀搜索算法

麻雀搜索算法的具体原理参考博客:https://blog.csdn.net/u011835903/article/details/108830958。

2.PCNN网络

在这里插入图片描述

图1.PCNN 模型结构

为了提高效率,减少参数间的相互作用,采用简化的 PCNN 模型。如图1所示,简化 PCNN 的结构分为接收部分、调制部分和脉冲发生器 3 部分。其数学表达式为:
F i j [ n ] = S i j (1) F_{ij}[n] = S_{ij} \tag{1} Fij[n]=Sij(1)

F i j [ n ] = ∑ W i j k l Y k l [ n − 1 ] (2) F_{ij}[n] = \sum W_{ijkl}Y_{kl}[n-1] \tag{2} Fij[n]=WijklYkl[n1](2)

θ i j [ n ] = e x p ( − α E ) θ i j [ n − 1 ] + V E Y i j [ n − 1 ] (3) \theta_{ij}[n] = exp(-\alpha_E)\theta_{ij}[n-1]+V_EY_{ij}[n-1] \tag{3} θij[n]=exp(αE)θij[n1]+VEYij[n1](3)

Y i j [ n ] = { 1 , U i j [ n ] ≥ θ i j [ n ] 0 , U i j [ n ] < θ i j [ n ] (4) Y_{ij}[n] = \begin{cases} 1,U_{ij}[n]\geq \theta_{ij}[n]\\ 0,U_{ij}[n]<\theta_{ij}[n] \end{cases} \tag{4} Yij[n]={1,Uij[n]θij[n]0,Uij[n]<θij[n](4)

式中: F i j [ n ] F_{ij}[n] Fij[n]表示 PCNN 的输入; S i j [ n ] S_{ij}[n] Sij[n]是外部输入,比如一幅图像的所有像素点; L i j [ n ] L_{ij}[n] Lij[n]是连接输入; U i j [ n ] U_{ij}[n] Uij[n]是内部活动项, θ i j [ n ] \theta_{ij}[n] θij[n]表示动态阈值, Y i j [ n ] Y_{ij}[n] Yij[n]是神经网络的输出; β \beta β是连接系数, W i j k l W_{ijkl} Wijkl是连接矩阵; α E \alpha_E αE是阈值衰减系数, V E V_E VE 是阈值放大系数。通常 W i j k l W_{ijkl} Wijkl可以设置为:
W i j k l = [ 0.707 1 0.707 1 0 1 0.707 1 0.707 ] (5) W_{ijkl} = [\begin{matrix}0.707&1&0.707\\ 1&0&1\\ 0.707&1&0.707 \end{matrix}] \tag{5} Wijkl=[0.70710.7071010.70710.707](5)
在这些参数中,对分割结果产生较大影响的主要有3个:连接系数 β \beta β、阈值衰减系数 α E \alpha_E αE 、阈值放大系数 V E V_E VE

3.麻雀适应度函数设计

适应度函数作为优化算法中重要的一部分,影响着分割结果。熵能够反映目标包含的信息量的大小,熵越大,说明包含的信息量越大。因此,本文选取分割后图像的熵作为适应度函数,其公式为:
H = − p 1 ∗ l o g 2 p 1 − p 0 ∗ l o g 2 p 0 (6) H =-p_1*log_2p_1 - p_0*log_2p_0 \tag{6} H=p1log2p1p0log2p0(6)
式中: p 1 p_1 p1是二值图像中 1 占整幅图像的比例; p 0 p_0 p0 是二值图像中 0 占整幅图像的比例。

由于麻雀优化算法为寻找最小值,于是添加负号,转换为选找最小值:
f i t n e s s = a r g m i n ( − H ) (7) fitness = argmin(-H) \tag{7} fitness=argmin(H)(7)

3.实验结果

麻雀参数设置如下:

3 个参数范围均设置为 0.001 ~200;

%% 麻雀算法优化脉冲耦合神经网络的图像自动分割
%读取图像
I = imread('lena.jpg');
%将图像转换为灰度图
if(size(I,3)~=1)Igray = rgb2gray(I);
elseIgray = I;
end
%对连接系数β、阈值衰减系数 αE 、阈值放大数 VE进行优化
%设置麻雀算法参数
%参数范围均设置为 0.001-200
dim = 3;%维度,3维即优化的3个参数
lb = 0.001.*ones(1,dim); %下边界
ub = 200.*ones(1,dim); %上边界
pop = 20;%种群数量
Max_iteration = 20;%最大迭代次数
fobj = @(x) fun(x,Igray);%适应度函数

在这里插入图片描述

优化的连接系数β、阈值衰减系数 αE 、阈值放大数 VE分别为:51.99388 0.001 155.0309

SSA-PCNN分割后的信息熵值0.99998

从结果图像和信息熵值来看,信息熵值接近1,表明优化取得了一个比较好的结果。

4.参考文献

[1]贾鹤鸣,康立飞,孙康健,彭晓旭,李瑶,姜子超.哈里斯鹰算法优化脉冲耦合神经网络的图像自动分割[J].应用科技,2019,46(04):16-20+25. (基本原理参考该文章)

5.Matlab代码

1.麻雀算法优化脉冲耦合神经网络的图像自动分割

2.哈里斯鹰算法优化脉冲耦合神经网络的图像自动分割
[1]贾鹤鸣,康立飞,孙康健,彭晓旭,李瑶,姜子超.哈里斯鹰算法优化脉冲耦合神经网络的图像自动分割[J].应用科技,2019,46(04):16-20+25.

个人资料介绍

这篇关于智能优化算法应用:麻雀算法优化脉冲耦合神经网络的图像自动分割 -附代码的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1071681

相关文章

C#实现千万数据秒级导入的代码

《C#实现千万数据秒级导入的代码》在实际开发中excel导入很常见,现代社会中很容易遇到大数据处理业务,所以本文我就给大家分享一下千万数据秒级导入怎么实现,文中有详细的代码示例供大家参考,需要的朋友可... 目录前言一、数据存储二、处理逻辑优化前代码处理逻辑优化后的代码总结前言在实际开发中excel导入很

SpringBoot+RustFS 实现文件切片极速上传的实例代码

《SpringBoot+RustFS实现文件切片极速上传的实例代码》本文介绍利用SpringBoot和RustFS构建高性能文件切片上传系统,实现大文件秒传、断点续传和分片上传等功能,具有一定的参考... 目录一、为什么选择 RustFS + SpringBoot?二、环境准备与部署2.1 安装 RustF

MyBatis Plus实现时间字段自动填充的完整方案

《MyBatisPlus实现时间字段自动填充的完整方案》在日常开发中,我们经常需要记录数据的创建时间和更新时间,传统的做法是在每次插入或更新操作时手动设置这些时间字段,这种方式不仅繁琐,还容易遗漏,... 目录前言解决目标技术栈实现步骤1. 实体类注解配置2. 创建元数据处理器3. 服务层代码优化填充机制详

Python实现Excel批量样式修改器(附完整代码)

《Python实现Excel批量样式修改器(附完整代码)》这篇文章主要为大家详细介绍了如何使用Python实现一个Excel批量样式修改器,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一... 目录前言功能特性核心功能界面特性系统要求安装说明使用指南基本操作流程高级功能技术实现核心技术栈关键函

PHP应用中处理限流和API节流的最佳实践

《PHP应用中处理限流和API节流的最佳实践》限流和API节流对于确保Web应用程序的可靠性、安全性和可扩展性至关重要,本文将详细介绍PHP应用中处理限流和API节流的最佳实践,下面就来和小编一起学习... 目录限流的重要性在 php 中实施限流的最佳实践使用集中式存储进行状态管理(如 Redis)采用滑动

深入浅出Spring中的@Autowired自动注入的工作原理及实践应用

《深入浅出Spring中的@Autowired自动注入的工作原理及实践应用》在Spring框架的学习旅程中,@Autowired无疑是一个高频出现却又让初学者头疼的注解,它看似简单,却蕴含着Sprin... 目录深入浅出Spring中的@Autowired:自动注入的奥秘什么是依赖注入?@Autowired

Redis实现高效内存管理的示例代码

《Redis实现高效内存管理的示例代码》Redis内存管理是其核心功能之一,为了高效地利用内存,Redis采用了多种技术和策略,如优化的数据结构、内存分配策略、内存回收、数据压缩等,下面就来详细的介绍... 目录1. 内存分配策略jemalloc 的使用2. 数据压缩和编码ziplist示例代码3. 优化的

从原理到实战解析Java Stream 的并行流性能优化

《从原理到实战解析JavaStream的并行流性能优化》本文给大家介绍JavaStream的并行流性能优化:从原理到实战的全攻略,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的... 目录一、并行流的核心原理与适用场景二、性能优化的核心策略1. 合理设置并行度:打破默认阈值2. 避免装箱

Python 基于http.server模块实现简单http服务的代码举例

《Python基于http.server模块实现简单http服务的代码举例》Pythonhttp.server模块通过继承BaseHTTPRequestHandler处理HTTP请求,使用Threa... 目录测试环境代码实现相关介绍模块简介类及相关函数简介参考链接测试环境win11专业版python

Python从Word文档中提取图片并生成PPT的操作代码

《Python从Word文档中提取图片并生成PPT的操作代码》在日常办公场景中,我们经常需要从Word文档中提取图片,并将这些图片整理到PowerPoint幻灯片中,手动完成这一任务既耗时又容易出错,... 目录引言背景与需求解决方案概述代码解析代码核心逻辑说明总结引言在日常办公场景中,我们经常需要从 W