智能优化算法应用:基于麻雀搜索算法的工程优化案例

2024-06-18 07:33

本文主要是介绍智能优化算法应用:基于麻雀搜索算法的工程优化案例,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

智能优化算法应用:基于麻雀搜索算法的工程优化案例

文章目录

  • 智能优化算法应用:基于麻雀搜索算法的工程优化案例
    • 1.麻雀搜索算法
    • 2.压力容器设计问题
    • 3.三杆桁架设计问题
    • 4.拉压弹簧设计问题
    • 4.Matlab代码

摘要:本文介绍利用麻雀搜索算法,对压力容器设计问题进行智能寻优。

1.麻雀搜索算法

麻雀搜索算法具体原理请参照:https://blog.csdn.net/u011835903/article/details/108830958

2.压力容器设计问题

在这里插入图片描述

图1.压力容器示意图

压力容器设计问题的目标是使压力容器制作(配对、成型和焊接)成本最小,压力容器的设计如图1所示,压力容器的两端都有盖子封顶,头部一端的封盖为半球状. L L L 是不考虑头部的圆柱体部分的截面长度, R R R是圆柱体部分的内壁直径, T s T_s Ts T h T_h Th分别表示圆柱体部分壁厚和头部的壁厚, L L L R R R T s T_s Ts T h T_h Th 即为压力容器设计问题的四个优化变量. 问题的目标函数和四个优化约束表示如下:
x = [ x 1 , x 2 , x 3 , x 4 ] = [ T s , T h , R , L ] x=[x_1,x_2,x_3,x_4]=[T_s,T_h,R,L] x=[x1,x2,x3,x4]=[Ts,Th,R,L]

M i n f ( x ) = 0.6224 x 1 x 3 x 4 + 1.7781 x 2 x 3 2 + 3.1661 x 1 2 x 4 + 19.84 x 1 2 x 3 Minf(x)=0.6224x_1x_3x_4+1.7781x_2x_3^2+3.1661x_1^2x_4+19.84x_1^2x_3 Minf(x)=0.6224x1x3x4+1.7781x2x32+3.1661x12x4+19.84x12x3

约束条件为:
g 1 ( x ) = − x 1 + 0.0193 x 3 ≤ 0 g_1(x)=-x_1+0.0193x_3\leq0 g1(x)=x1+0.0193x30

g 2 ( x ) = − x 2 + 0.00954 x 3 ≤ 0 g_2(x)=-x_2+0.00954x_3\leq0 g2(x)=x2+0.00954x30

g 3 ( x ) = − π x 3 2 − 4 π x 3 3 / 3 + 1296000 ≤ 0 g_3(x)=-\pi x_3^2-4\pi x_3^3/3+1296000 \leq0 g3(x)=πx324πx33/3+12960000

g 4 ( x ) = x 4 − 240 ≤ 0 g_4(x)=x_4-240\leq0 g4(x)=x42400

0 ≤ x 1 ≤ 100 , 0 ≤ x 2 ≤ 100 , 10 ≤ x 3 ≤ 100 , 10 ≤ x 4 ≤ 100 0\leq x_1\leq100,0\leq x_2\leq100,10\leq x_3\leq100,10\leq x_4\leq100 0x1100,0x2100,10x3100,10x4100

参数设定:

clear all 
clc
SearchAgents_no=100; %种群数量
Max_iteration=500; %设定最大迭代次数
dim = 4;%维度为4,即x1-x4
lb = [0,0,10,10];%参数下边界
ub =[100,100,200,200];%参数上边界
fobj = @(x) funP(x);

实验结果:

在这里插入图片描述

最终获得的最优Ts Th R L参数分别为:: 1.30353 0.646514 67.386 33.4108

3.三杆桁架设计问题

三杆桁架设计问题的目的是通过调整横截面积( x 1 , x 2 x_1,x_2 x1,x2​ )来最小化三杆桁架的体积。该三杆式桁架在每个桁架构件上受到应力(σ )约束,如图 2所示。该优化问题具有一个非线性适应度函数、3个非线性不等式约束和两个连续决策变量,如下所示:

请添加图片描述

图2.三杆桁架设计问题示意图

m i n f ( x ) = ( 2 2 x 1 + x 2 ) l min\,f(x)=(2\sqrt{2}x_1+x_2)l minf(x)=(22 x1+x2)l

约束条件为:
g 1 ( x ) = 2 x 1 + x 2 2 x 1 2 + 2 x 1 x 2 P − σ ≤ 0 g_1(x)=\frac{\sqrt{2}x_1+x_2}{\sqrt{2}x_1^2+2x_1x_2}P-\sigma\leq0 g1(x)=2 x12+2x1x22 x1+x2Pσ0

g 2 ( x ) = x 2 / ( 2 x 1 2 + 2 x 1 x 2 ) P − σ ≤ 0 g_2(x)=x_2/(\sqrt2x_1^2+2x_1x_2)P-\sigma\leq0 g2(x)=x2/(2 x12+2x1x2)Pσ0

g 3 ( x ) = 1 2 x 2 + x 1 P − σ ≤ 0 g_3(x)=\frac{1}{\sqrt2x_2+x_1}P-\sigma\leq0 g3(x)=2 x2+x11Pσ0

l = 100 c m , P = 2 k N / c m 2 , σ = 2 k N / c m 2 l=100cm,P=2kN/cm^2,\sigma=2kN/cm^2 l=100cm,P=2kN/cm2,σ=2kN/cm2

参数设定:

clear all 
clc
SearchAgents_no=100; %种群数量
Max_iteration=500; %设定最大迭代次数
dim = 2;%维度为2,即x1-x2
lb = [0,0];%参数下边界
ub =[1,1];%参数上边界
fobj = @(x) funS(x);

实验结果:

请添加图片描述

麻雀算法获得的适应度值为 : 263.9015
获得的最优参数x1,x2分别为:: 0.78707 0.41285

4.拉压弹簧设计问题

如图 3 所示,拉压弹簧设计问题的目的是在满足最小挠度、震动频率和剪应力的约束下,最小化拉压弹簧的重量。该问题由 3 个连续的决策变量组成,即弹簧线圈直径( d d d x 1 x_1 x1 )、弹簧簧圈直径( D D D x 2 x_2 x2)和绕线圈数( P P P x 3 x_3 x3​ )。数学模型表示公式如下:

请添加图片描述

图3.拉压弹簧设计问题示意图

m i n f ( x ) = ( x 3 + 2 ) x 2 x 1 2 min\,f(x)=(x_3+2)x_2x_1^2 minf(x)=(x3+2)x2x12

约束条件为:
g 1 ( x ) = 1 − x 2 3 x 3 71785 x 1 4 ≤ 0 g_1(x)=1-\frac{x_2^3x_3}{71785x_1^4}\leq0 g1(x)=171785x14x23x30

g 2 ( x ) = 4 x 2 2 − x 1 x 2 12566 ( x 2 x 1 3 − x 1 4 ) + 1 5108 x 1 2 − 1 ≤ 0 g_2(x)=\frac{4x_2^2-x_1x_2}{12566(x_2x_1^3-x_1^4)}+\frac{1}{5108x_1^2}-1\leq0 g2(x)=12566(x2x13x14)4x22x1x2+5108x12110

g 3 ( x ) = 1 − 140.45 x 1 x 2 2 x 3 ≤ 0 g_3(x)=1-\frac{140.45x_1}{x_2^2x_3}\leq0 g3(x)=1x22x3140.45x10

g 4 ( x ) = x 1 + x 2 1.5 − 1 ≤ 0 g_4(x)=\frac{x_1+x_2}{1.5}-1\leq0 g4(x)=1.5x1+x210

0.05 ≤ x 2 ≤ 2 , 0.25 ≤ x 2 ≤ 1.3 , 2 ≤ x 3 ≤ 15 0.05\leq x_2\leq2,0.25\leq x_2\leq1.3,2\leq x_3\leq15 0.05x22,0.25x21.3,2x315

参数设定:

clear all 
clc
SearchAgents_no=100; %种群数量
Max_iteration=500; %设定最大迭代次数
dim = 3;%维度为3,即x1-x3
lb = [0.05,0.25,2];%参数下边界
ub =[2,1.3,15];%参数上边界
fobj = @(x) funS(x);

实验结果:
请添加图片描述

麻雀算法获得的适应度值为 : 263.8977
获得的最优参数x1,x2,x3分别为:: 0.7882 0.40961 2

4.Matlab代码

这篇关于智能优化算法应用:基于麻雀搜索算法的工程优化案例的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1071666

相关文章

PHP应用中处理限流和API节流的最佳实践

《PHP应用中处理限流和API节流的最佳实践》限流和API节流对于确保Web应用程序的可靠性、安全性和可扩展性至关重要,本文将详细介绍PHP应用中处理限流和API节流的最佳实践,下面就来和小编一起学习... 目录限流的重要性在 php 中实施限流的最佳实践使用集中式存储进行状态管理(如 Redis)采用滑动

深度解析Java @Serial 注解及常见错误案例

《深度解析Java@Serial注解及常见错误案例》Java14引入@Serial注解,用于编译时校验序列化成员,替代传统方式解决运行时错误,适用于Serializable类的方法/字段,需注意签... 目录Java @Serial 注解深度解析1. 注解本质2. 核心作用(1) 主要用途(2) 适用位置3

深入浅出Spring中的@Autowired自动注入的工作原理及实践应用

《深入浅出Spring中的@Autowired自动注入的工作原理及实践应用》在Spring框架的学习旅程中,@Autowired无疑是一个高频出现却又让初学者头疼的注解,它看似简单,却蕴含着Sprin... 目录深入浅出Spring中的@Autowired:自动注入的奥秘什么是依赖注入?@Autowired

从原理到实战解析Java Stream 的并行流性能优化

《从原理到实战解析JavaStream的并行流性能优化》本文给大家介绍JavaStream的并行流性能优化:从原理到实战的全攻略,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的... 目录一、并行流的核心原理与适用场景二、性能优化的核心策略1. 合理设置并行度:打破默认阈值2. 避免装箱

Python实战之SEO优化自动化工具开发指南

《Python实战之SEO优化自动化工具开发指南》在数字化营销时代,搜索引擎优化(SEO)已成为网站获取流量的重要手段,本文将带您使用Python开发一套完整的SEO自动化工具,需要的可以了解下... 目录前言项目概述技术栈选择核心模块实现1. 关键词研究模块2. 网站技术seo检测模块3. 内容优化分析模

Java 正则表达式的使用实战案例

《Java正则表达式的使用实战案例》本文详细介绍了Java正则表达式的使用方法,涵盖语法细节、核心类方法、高级特性及实战案例,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要... 目录一、正则表达式语法详解1. 基础字符匹配2. 字符类([]定义)3. 量词(控制匹配次数)4. 边

Python Counter 函数使用案例

《PythonCounter函数使用案例》Counter是collections模块中的一个类,专门用于对可迭代对象中的元素进行计数,接下来通过本文给大家介绍PythonCounter函数使用案例... 目录一、Counter函数概述二、基本使用案例(一)列表元素计数(二)字符串字符计数(三)元组计数三、C

Java实现复杂查询优化的7个技巧小结

《Java实现复杂查询优化的7个技巧小结》在Java项目中,复杂查询是开发者面临的“硬骨头”,本文将通过7个实战技巧,结合代码示例和性能对比,手把手教你如何让复杂查询变得优雅,大家可以根据需求进行选择... 目录一、复杂查询的痛点:为何你的代码“又臭又长”1.1冗余变量与中间状态1.2重复查询与性能陷阱1.

Python内存优化的实战技巧分享

《Python内存优化的实战技巧分享》Python作为一门解释型语言,虽然在开发效率上有着显著优势,但在执行效率方面往往被诟病,然而,通过合理的内存优化策略,我们可以让Python程序的运行速度提升3... 目录前言python内存管理机制引用计数机制垃圾回收机制内存泄漏的常见原因1. 循环引用2. 全局变

PostgreSQL简介及实战应用

《PostgreSQL简介及实战应用》PostgreSQL是一种功能强大的开源关系型数据库管理系统,以其稳定性、高性能、扩展性和复杂查询能力在众多项目中得到广泛应用,本文将从基础概念讲起,逐步深入到高... 目录前言1. PostgreSQL基础1.1 PostgreSQL简介1.2 基础语法1.3 数据库