智能优化算法:秃鹰搜索算法 -附代码

2024-06-18 07:33

本文主要是介绍智能优化算法:秃鹰搜索算法 -附代码,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

智能优化算法:秃鹰搜索算法

文章目录

  • 智能优化算法:秃鹰搜索算法
    • 1.算法原理
      • 1.1 选择搜索空间
      • 1.2 搜索空间猎物 (探索)
      • 1.3 俯冲捕获猎物 (利用)
    • 2.实验结果
    • 3.参考文献
    • 4.Matlab代码

摘要:秃鹰搜索 (bald eagle search,BES) 优化是马来西亚学者Alsattar 于2020年提出的一种新型元启发式算法, 该算法具有较强的全局搜索能力, 能够有效地解决各类复杂数值优化问题的优点。

1.算法原理

秃鹰遍布于北美洲地区, 飞行中视力敏锐, 观察能力优秀. 以捕食鲑鱼为例, 秃鹰首先会基于个体和种群到鲑鱼的浓度来选择搜索空间, 朝一个特定区域飞行; 其次在选定搜索空间内搜索水面, 直到发现合适的猎物; 最后秃鹰会逐渐改变飞行高度, 快速向下俯冲, 从水中成功捕获鲑鱼等猎物.

BES 算法以秃鹰捕食猎物的行为进行模拟, 将其分为选择搜索空间、搜索空间猎物和俯冲捕获猎物三个阶段, 数学模型如下所示:

1.1 选择搜索空间

秃鹰随机选择搜索区域, 通过判断猎物数目来确定最佳搜寻位置, 便于搜索猎物,该阶段秃鹰位置 P i , n e w P_{i,new} Pi,new更新由随机搜索的先验信息乘以 α \alpha α来确定. 该行为数学模型描述为:
P i , n e w = P b e s t + α ∗ r ( P m e a n − P i ) (1) P_{i,new}=P_{best}+\alpha*r(P_{mean}-P_i)\tag{1} Pi,new=Pbest+αr(PmeanPi)(1)
式中: α α α 表示控制位置变化参数, 变化范围为 (1.5,2); r r r为 (0,1) 间随机数; P b e s t P_{best} Pbest 为当前秃鹰搜索确定的最佳搜索位置; P m e a n P_{mean} Pmean 为先前搜索结束后秃鹰的平均分布位置; P i P_i Pi 为第 i i i 只秃鹰位置.

1.2 搜索空间猎物 (探索)

秃鹰在选定搜索空间内以螺旋形状飞行搜索猎物, 加速搜索进程, 寻找最佳俯冲捕获位置. 螺旋飞行数学模型采用极坐标方程进行位置更新, 如下所示:
θ ( i ) = a ∗ π ∗ r a n d (2) \theta(i) = a*\pi*rand \tag{2} θ(i)=aπrand(2)

r ( i ) = θ ( i ) + R ∗ r a n d (3) r(i)=\theta(i) + R*rand\tag{3} r(i)=θ(i)+Rrand(3)

x r ( i ) = r ( i ) ∗ s i n ( θ ( i ) ) (4) xr(i)=r(i)*sin(\theta(i))\tag{4} xr(i)=r(i)sin(θ(i))(4)

y r ( i ) = r ( i ) ∗ c o s ( θ ( i ) ) (5) yr(i)=r(i)*cos(\theta(i))\tag{5} yr(i)=r(i)cos(θ(i))(5)

x ( i ) = x r ( i ) / m a x ( ∣ x r ∣ ) (6) x(i)=xr(i)/max(|xr|) \tag{6} x(i)=xr(i)/max(xr)(6)

y ( i ) = y r ( i ) / m a x ( ∣ y r ∣ ) (7) y(i)=yr(i)/max(|yr|)\tag{7} y(i)=yr(i)/max(yr)(7)

其中: θ ( i ) θ(i) θ(i) r ( i ) r(i) r(i) 分别为螺旋方程的极角与极径; a a a R R R是控制螺旋轨迹的参数, 变化范围分别为 (0,5)、(0.5,2); r a n d rand rand 为 (0,1) 内随机数, x ( i ) x(i) x(i) y ( i ) y(i) y(i) 表示极坐标中秃鹰位置, 取值均为 (-1,1). 秃鹰位置更新如下:
P i , n e w = P i + x ( i ) ∗ ( P i − P m e a n ) + y ( i ) ∗ ( P i − P i + 1 ) (8) P_{i,new}=P_i+x(i)*(P_i-P_{mean})+y(i)*(P_i-P_{i+1})\tag{8} Pi,new=Pi+x(i)(PiPmean)+y(i)(PiPi+1)(8)

1.3 俯冲捕获猎物 (利用)

秃鹰从搜索空间的最佳位置快速俯冲飞向目标猎物, 种群其他个体也同时向最佳位置移动并攻击猎物, 运动状态仍用极坐标方程描述, 如下:

θ ( i ) = a ∗ π ∗ r a n d (9) \theta(i) = a*\pi*rand \tag{9} θ(i)=aπrand(9)

r ( i ) = θ ( i ) (10) r(i)=\theta(i)\tag{10} r(i)=θ(i)(10)

x r ( i ) = r ( i ) ∗ s i n h ( θ ( i ) ) (11) xr(i)=r(i)*sinh(\theta(i))\tag{11} xr(i)=r(i)sinh(θ(i))(11)

y r ( i ) = r ( i ) ∗ c o s h ( θ ( i ) ) (12) yr(i)=r(i)*cosh(\theta(i))\tag{12} yr(i)=r(i)cosh(θ(i))(12)

x 1 ( i ) = x r ( i ) / m a x ( ∣ x r ∣ ) (13) x1(i)=xr(i)/max(|xr|) \tag{13} x1(i)=xr(i)/max(xr)(13)

y 1 ( i ) = y r ( i ) / m a x ( ∣ y r ∣ ) (14) y1(i)=yr(i)/max(|yr|)\tag{14} y1(i)=yr(i)/max(yr)(14)

俯冲中秃鹰位置更新公式为:
{ δ x = x 1 ( i ) ∗ ( P i − c 1 ∗ P m e a n ) δ y = y 1 ( i ) ∗ ( P i − c 2 ∗ P b e s t ) (15) \begin{cases} \delta_x = x1(i)*(P_i-c_1*P_{mean})\\ \delta_y = y1(i)*(P_i-c_2*P_{best}) \end{cases}\tag{15} {δx=x1(i)(Pic1Pmean)δy=y1(i)(Pic2Pbest)(15)

P i , n e w = r a n d ∗ P b e s t + δ x + δ y (16) P_{i,new}=rand*P_{best}+\delta_x+\delta_y\tag{16} Pi,new=randPbest+δx+δy(16)

式中: c 1 c_1 c1 c 2 c_2 c2 表示秃鹰向最佳与中心位置的运动强度, 取值均为 (1,2).

算法流程:

step1:初始化秃鹰算法参数,初始化种群

step2:计算适应度值

step3:秃鹰选择搜索空间,利用式(1)更新位置

step4:秃鹰在搜索空间搜索猎物,利用式(6)更新位置

step5:秃鹰俯冲,利用式(16),更新位置

step6: 判断是否达到结束条件,如果达到则输出最优结果,否则重复步骤step2-step6.

2.实验结果

在这里插入图片描述

3.参考文献

[1]Alsattar H A, Zaidan A A, Zaidan B B. Novel meta-heuristic bald eagle search optimisation algorithm[J]. Artificial Intelligence Review: An International Science and Engineering Journal, 2020,53(8): 2237-2264.

[1]贾鹤鸣,姜子超,李瑶.基于改进秃鹰搜索算法的同步优化特征选择[J/OL].控制与决策:1-9[2021-02-09].https://doi.org/10.13195/j.kzyjc.2020.1025.

4.Matlab代码

改进算法matlab代码

名称说明或者参考文献
基于levy飞行和模拟退火改进的秃鹰算法(IBES)[1]贾鹤鸣,姜子超,李瑶.基于改进秃鹰搜索算法的同步优化特征选择[J/OL].控制与决策:1-9[2021-11-10].https://doi.org/10.13195/j.kzyjc.2020.1025.

个人资料介绍

这篇关于智能优化算法:秃鹰搜索算法 -附代码的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1071665

相关文章

Python实例题之pygame开发打飞机游戏实例代码

《Python实例题之pygame开发打飞机游戏实例代码》对于python的学习者,能够写出一个飞机大战的程序代码,是不是感觉到非常的开心,:本文主要介绍Python实例题之pygame开发打飞机... 目录题目pygame-aircraft-game使用 Pygame 开发的打飞机游戏脚本代码解释初始化部

Java中Map.Entry()含义及方法使用代码

《Java中Map.Entry()含义及方法使用代码》:本文主要介绍Java中Map.Entry()含义及方法使用的相关资料,Map.Entry是Java中Map的静态内部接口,用于表示键值对,其... 目录前言 Map.Entry作用核心方法常见使用场景1. 遍历 Map 的所有键值对2. 直接修改 Ma

深入解析 Java Future 类及代码示例

《深入解析JavaFuture类及代码示例》JavaFuture是java.util.concurrent包中用于表示异步计算结果的核心接口,下面给大家介绍JavaFuture类及实例代码,感兴... 目录一、Future 类概述二、核心工作机制代码示例执行流程2. 状态机模型3. 核心方法解析行为总结:三

python获取cmd环境变量值的实现代码

《python获取cmd环境变量值的实现代码》:本文主要介绍在Python中获取命令行(cmd)环境变量的值,可以使用标准库中的os模块,需要的朋友可以参考下... 前言全局说明在执行py过程中,总要使用到系统环境变量一、说明1.1 环境:Windows 11 家庭版 24H2 26100.4061

pandas实现数据concat拼接的示例代码

《pandas实现数据concat拼接的示例代码》pandas.concat用于合并DataFrame或Series,本文主要介绍了pandas实现数据concat拼接的示例代码,具有一定的参考价值,... 目录语法示例:使用pandas.concat合并数据默认的concat:参数axis=0,join=

C#代码实现解析WTGPS和BD数据

《C#代码实现解析WTGPS和BD数据》在现代的导航与定位应用中,准确解析GPS和北斗(BD)等卫星定位数据至关重要,本文将使用C#语言实现解析WTGPS和BD数据,需要的可以了解下... 目录一、代码结构概览1. 核心解析方法2. 位置信息解析3. 经纬度转换方法4. 日期和时间戳解析5. 辅助方法二、L

Python使用Code2flow将代码转化为流程图的操作教程

《Python使用Code2flow将代码转化为流程图的操作教程》Code2flow是一款开源工具,能够将代码自动转换为流程图,该工具对于代码审查、调试和理解大型代码库非常有用,在这篇博客中,我们将深... 目录引言1nVflRA、为什么选择 Code2flow?2、安装 Code2flow3、基本功能演示

IIS 7.0 及更高版本中的 FTP 状态代码

《IIS7.0及更高版本中的FTP状态代码》本文介绍IIS7.0中的FTP状态代码,方便大家在使用iis中发现ftp的问题... 简介尝试使用 FTP 访问运行 Internet Information Services (IIS) 7.0 或更高版本的服务器上的内容时,IIS 将返回指示响应状态的数字代

MySQL 添加索引5种方式示例详解(实用sql代码)

《MySQL添加索引5种方式示例详解(实用sql代码)》在MySQL数据库中添加索引可以帮助提高查询性能,尤其是在数据量大的表中,下面给大家分享MySQL添加索引5种方式示例详解(实用sql代码),... 在mysql数据库中添加索引可以帮助提高查询性能,尤其是在数据量大的表中。索引可以在创建表时定义,也可

使用C#删除Excel表格中的重复行数据的代码详解

《使用C#删除Excel表格中的重复行数据的代码详解》重复行是指在Excel表格中完全相同的多行数据,删除这些重复行至关重要,因为它们不仅会干扰数据分析,还可能导致错误的决策和结论,所以本文给大家介绍... 目录简介使用工具C# 删除Excel工作表中的重复行语法工作原理实现代码C# 删除指定Excel单元