智能优化算法:秃鹰搜索算法 -附代码

2024-06-18 07:33

本文主要是介绍智能优化算法:秃鹰搜索算法 -附代码,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

智能优化算法:秃鹰搜索算法

文章目录

  • 智能优化算法:秃鹰搜索算法
    • 1.算法原理
      • 1.1 选择搜索空间
      • 1.2 搜索空间猎物 (探索)
      • 1.3 俯冲捕获猎物 (利用)
    • 2.实验结果
    • 3.参考文献
    • 4.Matlab代码

摘要:秃鹰搜索 (bald eagle search,BES) 优化是马来西亚学者Alsattar 于2020年提出的一种新型元启发式算法, 该算法具有较强的全局搜索能力, 能够有效地解决各类复杂数值优化问题的优点。

1.算法原理

秃鹰遍布于北美洲地区, 飞行中视力敏锐, 观察能力优秀. 以捕食鲑鱼为例, 秃鹰首先会基于个体和种群到鲑鱼的浓度来选择搜索空间, 朝一个特定区域飞行; 其次在选定搜索空间内搜索水面, 直到发现合适的猎物; 最后秃鹰会逐渐改变飞行高度, 快速向下俯冲, 从水中成功捕获鲑鱼等猎物.

BES 算法以秃鹰捕食猎物的行为进行模拟, 将其分为选择搜索空间、搜索空间猎物和俯冲捕获猎物三个阶段, 数学模型如下所示:

1.1 选择搜索空间

秃鹰随机选择搜索区域, 通过判断猎物数目来确定最佳搜寻位置, 便于搜索猎物,该阶段秃鹰位置 P i , n e w P_{i,new} Pi,new更新由随机搜索的先验信息乘以 α \alpha α来确定. 该行为数学模型描述为:
P i , n e w = P b e s t + α ∗ r ( P m e a n − P i ) (1) P_{i,new}=P_{best}+\alpha*r(P_{mean}-P_i)\tag{1} Pi,new=Pbest+αr(PmeanPi)(1)
式中: α α α 表示控制位置变化参数, 变化范围为 (1.5,2); r r r为 (0,1) 间随机数; P b e s t P_{best} Pbest 为当前秃鹰搜索确定的最佳搜索位置; P m e a n P_{mean} Pmean 为先前搜索结束后秃鹰的平均分布位置; P i P_i Pi 为第 i i i 只秃鹰位置.

1.2 搜索空间猎物 (探索)

秃鹰在选定搜索空间内以螺旋形状飞行搜索猎物, 加速搜索进程, 寻找最佳俯冲捕获位置. 螺旋飞行数学模型采用极坐标方程进行位置更新, 如下所示:
θ ( i ) = a ∗ π ∗ r a n d (2) \theta(i) = a*\pi*rand \tag{2} θ(i)=aπrand(2)

r ( i ) = θ ( i ) + R ∗ r a n d (3) r(i)=\theta(i) + R*rand\tag{3} r(i)=θ(i)+Rrand(3)

x r ( i ) = r ( i ) ∗ s i n ( θ ( i ) ) (4) xr(i)=r(i)*sin(\theta(i))\tag{4} xr(i)=r(i)sin(θ(i))(4)

y r ( i ) = r ( i ) ∗ c o s ( θ ( i ) ) (5) yr(i)=r(i)*cos(\theta(i))\tag{5} yr(i)=r(i)cos(θ(i))(5)

x ( i ) = x r ( i ) / m a x ( ∣ x r ∣ ) (6) x(i)=xr(i)/max(|xr|) \tag{6} x(i)=xr(i)/max(xr)(6)

y ( i ) = y r ( i ) / m a x ( ∣ y r ∣ ) (7) y(i)=yr(i)/max(|yr|)\tag{7} y(i)=yr(i)/max(yr)(7)

其中: θ ( i ) θ(i) θ(i) r ( i ) r(i) r(i) 分别为螺旋方程的极角与极径; a a a R R R是控制螺旋轨迹的参数, 变化范围分别为 (0,5)、(0.5,2); r a n d rand rand 为 (0,1) 内随机数, x ( i ) x(i) x(i) y ( i ) y(i) y(i) 表示极坐标中秃鹰位置, 取值均为 (-1,1). 秃鹰位置更新如下:
P i , n e w = P i + x ( i ) ∗ ( P i − P m e a n ) + y ( i ) ∗ ( P i − P i + 1 ) (8) P_{i,new}=P_i+x(i)*(P_i-P_{mean})+y(i)*(P_i-P_{i+1})\tag{8} Pi,new=Pi+x(i)(PiPmean)+y(i)(PiPi+1)(8)

1.3 俯冲捕获猎物 (利用)

秃鹰从搜索空间的最佳位置快速俯冲飞向目标猎物, 种群其他个体也同时向最佳位置移动并攻击猎物, 运动状态仍用极坐标方程描述, 如下:

θ ( i ) = a ∗ π ∗ r a n d (9) \theta(i) = a*\pi*rand \tag{9} θ(i)=aπrand(9)

r ( i ) = θ ( i ) (10) r(i)=\theta(i)\tag{10} r(i)=θ(i)(10)

x r ( i ) = r ( i ) ∗ s i n h ( θ ( i ) ) (11) xr(i)=r(i)*sinh(\theta(i))\tag{11} xr(i)=r(i)sinh(θ(i))(11)

y r ( i ) = r ( i ) ∗ c o s h ( θ ( i ) ) (12) yr(i)=r(i)*cosh(\theta(i))\tag{12} yr(i)=r(i)cosh(θ(i))(12)

x 1 ( i ) = x r ( i ) / m a x ( ∣ x r ∣ ) (13) x1(i)=xr(i)/max(|xr|) \tag{13} x1(i)=xr(i)/max(xr)(13)

y 1 ( i ) = y r ( i ) / m a x ( ∣ y r ∣ ) (14) y1(i)=yr(i)/max(|yr|)\tag{14} y1(i)=yr(i)/max(yr)(14)

俯冲中秃鹰位置更新公式为:
{ δ x = x 1 ( i ) ∗ ( P i − c 1 ∗ P m e a n ) δ y = y 1 ( i ) ∗ ( P i − c 2 ∗ P b e s t ) (15) \begin{cases} \delta_x = x1(i)*(P_i-c_1*P_{mean})\\ \delta_y = y1(i)*(P_i-c_2*P_{best}) \end{cases}\tag{15} {δx=x1(i)(Pic1Pmean)δy=y1(i)(Pic2Pbest)(15)

P i , n e w = r a n d ∗ P b e s t + δ x + δ y (16) P_{i,new}=rand*P_{best}+\delta_x+\delta_y\tag{16} Pi,new=randPbest+δx+δy(16)

式中: c 1 c_1 c1 c 2 c_2 c2 表示秃鹰向最佳与中心位置的运动强度, 取值均为 (1,2).

算法流程:

step1:初始化秃鹰算法参数,初始化种群

step2:计算适应度值

step3:秃鹰选择搜索空间,利用式(1)更新位置

step4:秃鹰在搜索空间搜索猎物,利用式(6)更新位置

step5:秃鹰俯冲,利用式(16),更新位置

step6: 判断是否达到结束条件,如果达到则输出最优结果,否则重复步骤step2-step6.

2.实验结果

在这里插入图片描述

3.参考文献

[1]Alsattar H A, Zaidan A A, Zaidan B B. Novel meta-heuristic bald eagle search optimisation algorithm[J]. Artificial Intelligence Review: An International Science and Engineering Journal, 2020,53(8): 2237-2264.

[1]贾鹤鸣,姜子超,李瑶.基于改进秃鹰搜索算法的同步优化特征选择[J/OL].控制与决策:1-9[2021-02-09].https://doi.org/10.13195/j.kzyjc.2020.1025.

4.Matlab代码

改进算法matlab代码

名称说明或者参考文献
基于levy飞行和模拟退火改进的秃鹰算法(IBES)[1]贾鹤鸣,姜子超,李瑶.基于改进秃鹰搜索算法的同步优化特征选择[J/OL].控制与决策:1-9[2021-11-10].https://doi.org/10.13195/j.kzyjc.2020.1025.

个人资料介绍

这篇关于智能优化算法:秃鹰搜索算法 -附代码的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1071665

相关文章

Python使用Tenacity一行代码实现自动重试详解

《Python使用Tenacity一行代码实现自动重试详解》tenacity是一个专为Python设计的通用重试库,它的核心理念就是用简单、清晰的方式,为任何可能失败的操作添加重试能力,下面我们就来看... 目录一切始于一个简单的 API 调用Tenacity 入门:一行代码实现优雅重试精细控制:让重试按我

使用Python构建智能BAT文件生成器的完美解决方案

《使用Python构建智能BAT文件生成器的完美解决方案》这篇文章主要为大家详细介绍了如何使用wxPython构建一个智能的BAT文件生成器,它不仅能够为Python脚本生成启动脚本,还提供了完整的文... 目录引言运行效果图项目背景与需求分析核心需求技术选型核心功能实现1. 数据库设计2. 界面布局设计3

小白也能轻松上手! 路由器设置优化指南

《小白也能轻松上手!路由器设置优化指南》在日常生活中,我们常常会遇到WiFi网速慢的问题,这主要受到三个方面的影响,首要原因是WiFi产品的配置优化不合理,其次是硬件性能的不足,以及宽带线路本身的质... 在数字化时代,网络已成为生活必需品,追剧、游戏、办公、学习都离不开稳定高速的网络。但很多人面对新路由器

Python实现MQTT通信的示例代码

《Python实现MQTT通信的示例代码》本文主要介绍了Python实现MQTT通信的示例代码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录1. 安装paho-mqtt库‌2. 搭建MQTT代理服务器(Broker)‌‌3. pytho

MySQL进行数据库审计的详细步骤和示例代码

《MySQL进行数据库审计的详细步骤和示例代码》数据库审计通过触发器、内置功能及第三方工具记录和监控数据库活动,确保安全、完整与合规,Java代码实现自动化日志记录,整合分析系统提升监控效率,本文给大... 目录一、数据库审计的基本概念二、使用触发器进行数据库审计1. 创建审计表2. 创建触发器三、Java

MySQL深分页进行性能优化的常见方法

《MySQL深分页进行性能优化的常见方法》在Web应用中,分页查询是数据库操作中的常见需求,然而,在面对大型数据集时,深分页(deeppagination)却成为了性能优化的一个挑战,在本文中,我们将... 目录引言:深分页,真的只是“翻页慢”那么简单吗?一、背景介绍二、深分页的性能问题三、业务场景分析四、

Linux进程CPU绑定优化与实践过程

《Linux进程CPU绑定优化与实践过程》Linux支持进程绑定至特定CPU核心,通过sched_setaffinity系统调用和taskset工具实现,优化缓存效率与上下文切换,提升多核计算性能,适... 目录1. 多核处理器及并行计算概念1.1 多核处理器架构概述1.2 并行计算的含义及重要性1.3 并

Python办公自动化实战之打造智能邮件发送工具

《Python办公自动化实战之打造智能邮件发送工具》在数字化办公场景中,邮件自动化是提升工作效率的关键技能,本文将演示如何使用Python的smtplib和email库构建一个支持图文混排,多附件,多... 目录前言一、基础配置:搭建邮件发送框架1.1 邮箱服务准备1.2 核心库导入1.3 基础发送函数二、

Java中的雪花算法Snowflake解析与实践技巧

《Java中的雪花算法Snowflake解析与实践技巧》本文解析了雪花算法的原理、Java实现及生产实践,涵盖ID结构、位运算技巧、时钟回拨处理、WorkerId分配等关键点,并探讨了百度UidGen... 目录一、雪花算法核心原理1.1 算法起源1.2 ID结构详解1.3 核心特性二、Java实现解析2.

Java中调用数据库存储过程的示例代码

《Java中调用数据库存储过程的示例代码》本文介绍Java通过JDBC调用数据库存储过程的方法,涵盖参数类型、执行步骤及数据库差异,需注意异常处理与资源管理,以优化性能并实现复杂业务逻辑,感兴趣的朋友... 目录一、存储过程概述二、Java调用存储过程的基本javascript步骤三、Java调用存储过程示