智能优化算法:狮群优化算法 - 附代码

2024-06-18 07:33

本文主要是介绍智能优化算法:狮群优化算法 - 附代码,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

智能优化算法:狮群优化算法

文章目录

  • 智能优化算法:狮群优化算法
    • 1.狮群算法原理
      • 1.1参数定义
      • 1.2算法原理
    • 2.实验结果
    • 3.参考文献
    • 4.Matlab代码
    • 5.python代码

摘要:狮群优化算法(Loin Swarm Optimization, LSO),是于2018年提出的一种新型智能优化算法,具有寻优能力强,收敛快的特点。

1.狮群算法原理

利用狮群算法求解目标函数全局优化问题时,将狮群分为 3 类:狮王、母狮和幼狮,3 者社会行为如下:

狮王是狮群中最强壮的公狮,需要保护幼狮和自己的领地,并给幼狮分配食物. 狮王是在残酷竞争中按照优胜劣汰法则产生的首领,通常还要不断面对狼群、流浪公狮等外来挑战.

母狮通常也是捕猎狮,主要负责养育幼狮,它们根据猎物踪迹互相配合进行围捕. 母狮在追踪食物时先大范围勘探,当靠近食物时,会在食物附近收缩包围圈猎杀食物.

幼狮也称作跟随狮,主要在狮王的保护下生存.幼狮主要围绕狮王和自己的母狮进行活动,幼狮的活动分为 3 种情况:饥饿时会主动靠向狮王附近进食;食饱后会跟随母狮学习捕猎;长大后,被狮王赶出领地成为流浪狮,历经锻炼后流浪狮中的公狮又会挑战原有狮王的地位.

狮群优化算法的主要思想如下:从待寻优空间中的某一初始位置开始,其中具有最佳适应度值的就是狮王,然后选取一定比例的捕猎狮,捕猎狮相互配合捕猎,一旦发现比当前狮王占有的猎物更优质的猎物,该猎物的位置会被狮王拥有. 幼狮跟随母狮学习打猎或在狮王附近进食,成年后会被驱赶出狮群,为了生存,被驱赶的狮子会努力朝记忆中的最佳位置靠近. 狮群按照分工合作,不断重复搜寻,得出目标函数最优值.

1.1参数定义

成年狮所占比例因子 β \beta β:

在整个狮群中成年狮所占比例影响最终寻优效果,成年狮所占比例越大,幼狮数目越少. 而幼狮位置更新呈现多样化,增加种群的差异性,提高算法的探测能力. 成年狮所占比例因子 β 为(0,1) 内的一个随机数,为使算法收敛速度较快,β 取值一般小于0.5。

母狮移动范围扰动因子 α f \alpha_f αf:

扰动因子定义如下,其目的是动态更新搜索范围促进收敛:
a f = s t e p . e x p ( − 30 t / T ) 10 (1) a_f =step.exp(-30t/T)^{10} \tag{1} af=step.exp(30t/T)10(1)
其中:
s t e p = 0.1 ( h i g h ′ − l o w ′ ) (2) step = 0.1(high'-low')\tag{2} step=0.1(highlow)(2)
表示狮子在活动范围内移动的最大步长,high’和low’分别表示狮子活动范围空间各维度的最小值均值和最大值均值;T 为群体最大迭代次数,t 为当前迭代次数。

幼狮移动范围扰动因子 α c \alpha_c αc

幼狮向狮王靠近进食或幼狮跟随母狮学习捕猎过程中均会在指定范围内搜索,而扰动因子起到拉长或压缩范围的作用,让幼狮在此范围内先大步勘探食物,发现食物后再小步精细查找,呈线性下降趋势. 扰动因子 α c \alpha_c αc定义如下:
α c = s t e p . ( ( T − t ) / T ) (3) \alpha_c = step.((T-t)/T) \tag{3} αc=step.((Tt)/T)(3)
其中step=1;

1.2算法原理

设在 D D D维的目标搜索空间中有N个狮子组成一群体,成年狮子数量为 n L e a d e r nLeader nLeader
2 ≤ n L e a d e r ≤ N / 2 (4) 2\leq nLeader\leq N/2 \tag{4} 2nLeaderN/2(4)
其中只有一头公狮,其余为母狮. 第 i ( 1 ≤ i ≤ N ) i(1 ≤i ≤N) i(1iN) 个狮子的位置为:
x i = ( x i 1 , x i 2 , . . . , x i D ) , 1 ≤ i ≤ N (5) x_i=(x_{i1},x_{i2},...,x_{iD}),1\leq i\leq N \tag{5} xi=(xi1,xi2,...,xiD),1iN(5)
成年狮的数量:
n L e a d e r = N ∗ β (6) nLeader = N*\beta \tag{6} nLeader=Nβ(6)
幼狮数量为 N − n L e a d e r N - nLeader NnLeader. 捕猎过程中不同类型的狮子的位置移动方式不同. 狮王在最佳食物处小范围移动确保自己的特权,按:
x i k + 1 = g k ( 1 + γ ∣ ∣ p i k − g k ∣ ∣ ) (7) x_i^{k+1}=g^k(1 + \gamma ||p_i^k-g^k||)\tag{7} xik+1=gk(1+γpikgk)(7)
更新自身位置. 母狮在捕食过程中需要跟另一个母狮协作,按
x i k + 1 = p i k + p c k 2 ( 1 + α f γ ) (8) x_i^{k+1} = \frac{p_i^k+p_c^k}{2}(1+\alpha_f \gamma) \tag{8} xik+1=2pik+pck(1+αfγ)(8)
调整自己的位置. 幼狮按
x i k = { p i k + g k 2 ( 1 + α c γ ) , q ≤ 1 / 3 p m k + p i k 2 ( 1 + α c γ ) , 1 / 3 ≤ q < 2 / 3 g ′ k + p i k 2 ( 1 + α c γ ) , 2 / 3 ≤ q < 1 (9) x_i^k = \begin{cases} \frac{p_i^k+g^k}{2}(1+\alpha_c \gamma),q\leq1/3\\ \frac{p_m^k+p_i^k}{2}(1+\alpha_c \gamma),1/3\leq q<2/3 \\ \frac{g'^k+p_i^k}{2}(1+\alpha_c \gamma),2/3 \leq q<1 \end{cases} \tag{9} xik=2pik+gk(1+αcγ),q1/32pmk+pik(1+αcγ),1/3q<2/32gk+pik(1+αcγ),2/3q<1(9)
调整自己的相应位置. 其中: γ \gamma γ是依照正态分布 N ( 0 , 1 ) N(0,1) N(0,1) 产生的随机数; p i k p_i^k pik为第 i i i 个狮子第 k k k 代的历史最优位置; g k g^k gk 表示第 k k k 代群体最优位置; p c k p_c^k pck 为从第 k k k代母狮群中随机挑选的一个捕猎协作伙伴的历史最佳位置;
g ′ k = l o w ′ − h i g h ′ − g k (10) g'^k = low'-high'-g^k \tag{10} gk=lowhighgk(10)
为第 i 个幼狮在捕猎范围内被驱赶的位置,在远离狮王的地方,是一种典型的精英反向学习思想,low’ 和high’ 分别为狮子活动空间范围内各维的最小值均值和最大值均值; p m k p_m^k pmk 为幼狮跟随母狮的第 k k k 代历史最佳位置;概率因子 q 为依照均匀分布 U[0,1]产生的匀随机值.

狮群算法的具体实施步骤如下.
step 1 初始化狮群中狮子的位置 x i 及其数目N,最大迭代次数 T,维度空间 D,成年狮占狮群比例因子 β.
step 2 根据式(6)计算狮群中狮王与母狮个数,其余为幼狮. 将个体历史最优位置设置为各狮的当前位置,初始群体最优位置设置为狮王位置.
step 3 根据式(7)更新狮王的位置,并计算适应度值.
step 4 根据式(8)更新母狮的位置.
step 5 根据式(9)更新幼狮的位置.

Step6 计算适应度值,更新全局最优位置和历史最优位置

Step7.判断是否达到结束条件,如果达到则输出结果,否则重复不揍2-7.

2.实验结果

在这里插入图片描述

3.参考文献

[1]刘生建,杨艳,周永权.一种群体智能算法——狮群算法[J].模式识别与人工智能,2018,31(05):431-441.

4.Matlab代码

算法相关应用

名称说明或者参考文献
基于狮群算法优化的核极限学习机(KELM)分类算法https://blog.csdn.net/u011835903/article/details/116851164(原理一样,只是优化算法用狮群算法)
基于狮群算法优化的核极限学习机(KELM)回归预测https://blog.csdn.net/u011835903/article/details/116849032(原理一样,只是优化算法用狮群算法)
基于狮群算法优化的SVM数据分类https://blog.csdn.net/u011835903/article/details/110523352(原理一样,只是优化算法用狮群算法)
狮群算法优化的BP神经网络(预测)https://blog.csdn.net/u011835903/article/details/112149776(原理一样,只是优化算法用狮群算法)
狮群算法优化的BP神经网络(分类)https://blog.csdn.net/u011835903/article/details/112149394(原理一样,只是优化算法用狮群算法)

5.python代码

个人资料介绍

这篇关于智能优化算法:狮群优化算法 - 附代码的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1071664

相关文章

Python使用Tenacity一行代码实现自动重试详解

《Python使用Tenacity一行代码实现自动重试详解》tenacity是一个专为Python设计的通用重试库,它的核心理念就是用简单、清晰的方式,为任何可能失败的操作添加重试能力,下面我们就来看... 目录一切始于一个简单的 API 调用Tenacity 入门:一行代码实现优雅重试精细控制:让重试按我

使用Python构建智能BAT文件生成器的完美解决方案

《使用Python构建智能BAT文件生成器的完美解决方案》这篇文章主要为大家详细介绍了如何使用wxPython构建一个智能的BAT文件生成器,它不仅能够为Python脚本生成启动脚本,还提供了完整的文... 目录引言运行效果图项目背景与需求分析核心需求技术选型核心功能实现1. 数据库设计2. 界面布局设计3

小白也能轻松上手! 路由器设置优化指南

《小白也能轻松上手!路由器设置优化指南》在日常生活中,我们常常会遇到WiFi网速慢的问题,这主要受到三个方面的影响,首要原因是WiFi产品的配置优化不合理,其次是硬件性能的不足,以及宽带线路本身的质... 在数字化时代,网络已成为生活必需品,追剧、游戏、办公、学习都离不开稳定高速的网络。但很多人面对新路由器

Python实现MQTT通信的示例代码

《Python实现MQTT通信的示例代码》本文主要介绍了Python实现MQTT通信的示例代码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录1. 安装paho-mqtt库‌2. 搭建MQTT代理服务器(Broker)‌‌3. pytho

MySQL进行数据库审计的详细步骤和示例代码

《MySQL进行数据库审计的详细步骤和示例代码》数据库审计通过触发器、内置功能及第三方工具记录和监控数据库活动,确保安全、完整与合规,Java代码实现自动化日志记录,整合分析系统提升监控效率,本文给大... 目录一、数据库审计的基本概念二、使用触发器进行数据库审计1. 创建审计表2. 创建触发器三、Java

MySQL深分页进行性能优化的常见方法

《MySQL深分页进行性能优化的常见方法》在Web应用中,分页查询是数据库操作中的常见需求,然而,在面对大型数据集时,深分页(deeppagination)却成为了性能优化的一个挑战,在本文中,我们将... 目录引言:深分页,真的只是“翻页慢”那么简单吗?一、背景介绍二、深分页的性能问题三、业务场景分析四、

Linux进程CPU绑定优化与实践过程

《Linux进程CPU绑定优化与实践过程》Linux支持进程绑定至特定CPU核心,通过sched_setaffinity系统调用和taskset工具实现,优化缓存效率与上下文切换,提升多核计算性能,适... 目录1. 多核处理器及并行计算概念1.1 多核处理器架构概述1.2 并行计算的含义及重要性1.3 并

Python办公自动化实战之打造智能邮件发送工具

《Python办公自动化实战之打造智能邮件发送工具》在数字化办公场景中,邮件自动化是提升工作效率的关键技能,本文将演示如何使用Python的smtplib和email库构建一个支持图文混排,多附件,多... 目录前言一、基础配置:搭建邮件发送框架1.1 邮箱服务准备1.2 核心库导入1.3 基础发送函数二、

Java中的雪花算法Snowflake解析与实践技巧

《Java中的雪花算法Snowflake解析与实践技巧》本文解析了雪花算法的原理、Java实现及生产实践,涵盖ID结构、位运算技巧、时钟回拨处理、WorkerId分配等关键点,并探讨了百度UidGen... 目录一、雪花算法核心原理1.1 算法起源1.2 ID结构详解1.3 核心特性二、Java实现解析2.

Java中调用数据库存储过程的示例代码

《Java中调用数据库存储过程的示例代码》本文介绍Java通过JDBC调用数据库存储过程的方法,涵盖参数类型、执行步骤及数据库差异,需注意异常处理与资源管理,以优化性能并实现复杂业务逻辑,感兴趣的朋友... 目录一、存储过程概述二、Java调用存储过程的基本javascript步骤三、Java调用存储过程示