智能优化算法:冠状病毒群体免疫优化算法 -附代码

2024-06-18 07:19

本文主要是介绍智能优化算法:冠状病毒群体免疫优化算法 -附代码,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

智能优化算法:冠状病毒群体免疫优化算法

文章目录

  • 智能优化算法:冠状病毒群体免疫优化算法
    • 1.算法原理
    • 2.算法结果
    • 3.参考文献
    • 4.Matlab

摘要:冠状病毒群体免疫优化算法是于2020年提出的一种新型智能优化算法。

1.算法原理

冠状病毒群免疫优化算法(CHIO)灵感来源于应对冠状病毒大流行(2019冠状病毒疾病)的群体免疫概念。传播冠状病毒的速度取决于感染者如何与其他社会成员直接接触。为了保护社会其他成员免受这种疾病的侵害,健康专家建议社会疏远。群体免疫是当大多数群体具有免疫力时,群体达到的一种状态,这种状态可以防止疾病的传播。这些概念是根据优化概念建模的。既模仿群体免疫策略,又模仿社会距离概念。利用三种类型的个体病例进行群体免疫: 易感者、感染者和免疫者。

提出的优化算法对群体免疫策略进行了建模。

第一步初始化 CHIO和最佳化问题的参数在这一步中,最佳化问题是在目标函数的背景下建立的:
m i n f ( x ) , x ∈ [ l b , u b ] (1) minf(x),x\in[lb,ub]\tag{1} minf(x),x[lb,ub](1)
其中: l b lb lb u b ub ub​分别为搜索的上下限。

第二步:首先产生群体免疫群体 H I P HIP HIP,然后随机(或启发式)产生一组病例(个体) H I S HIS HIS。生成的病例以二维矩阵 n × H I S n×HIS n×HIS​形式存储,如下所示:
H I P = [ x 1 1 , x 2 1 , . . . , x n 1 x 1 2 , x 2 2 , . . . , x n 2 . . . , . . . , . . . , . . . x 1 H I S , x 2 H I S , . . . , x n H I S ] (2) HIP=\left[\begin{matrix}x_1^1,x_2^1,...,x_n^1\\ x_1^2,x_2^2,...,x_n^2\\ ...,...,...,...\\ x_1^{HIS},x_2^{HIS},...,x_n^{HIS} \end{matrix}\right]\tag{2} HIP=x11,x21,...,xn1x12,x22,...,xn2...,...,...,...x1HIS,x2HIS,...,xnHIS(2)
其中: x i j = l b i + ( u b i − l b i ) ∗ r a n d , i = 1 , 2 , . . , n x_i^j=lb_i+(ub_i-lb_i)*rand,i=1,2,..,n xij=lbi+(ubilbi)rand,i=1,2,..,n, H I S HIS HIS为人口数量, n n n为问题的维数。利用方程(1)计算每种情况的目标函数(或免疫率)。

第三步:冠状病毒群体免疫进化这是主要的改进循环。 x i j x_i^j xij病例的基因 x j x^j xj​​要么保持不变,要么受到社会距离的影响,其影响根据基本繁殖率 B R r BRr BRr
x i j ( t + 1 ) = { x i j ( t ) , r ≥ B R r C ( x i j ( t ) ) , r < 1 / 3 B R r N ( x i j ( t ) ) , r < 2 / 3 B R r R ( x i j ( t ) ) , r < B R r (3) x_i^j(t+1)=\begin{cases} x_i^j(t),r\geq BRr\\ C(x_i^j(t)),r<1/3BRr\\ N(x_i^j(t)),r<2/3BRr\\ R(x_i^j(t)),r<BRr \end{cases}\tag{3} xij(t+1)=xij(t),rBRrC(xij(t)),r<1/3BRrN(xij(t)),r<2/3BRrR(xij(t)),r<BRr(3)
其中: r r r为在0和1之间的随机数。 x i j ( t + 1 ) x_i^j(t+1) xij(t+1)为新基因值, x i j ( t ) x_i^j(t) xij(t)为更新前的基因值。
C ( x i j ( t ) ) = x i j ( t ) + r ∗ ( x I j ( t ) − x i c ( t ) ) (4) C(x_i^j(t))=x_i^j(t)+r*(x_I^j(t)-x_i^c(t))\tag{4} C(xij(t))=xij(t)+r(xIj(t)xic(t))(4)
其中: x i c ( t ) x_i^c(t) xic(t)为根据从感染病例随机选择的状态向量 c = { i ∣ S i = 1 } c=\{i|S_i=1\} c={iSi=1}
N ( x i j ( t ) ) = x i j ( t ) + r ( x i j ( t ) − x i m ( t ) ) (5) N(x_i^j(t))=x_i^j(t)+r(x_i^j(t)-x_i^m(t))\tag{5} N(xij(t))=xij(t)+r(xij(t)xim(t))(5)
其中: x i m ( t ) x_i^m(t) xim(t)为根据从感染病例随机选择的状态向量 m = { i ∣ S i = 0 } m=\{i|S_i=0\} m={iSi=0}
R ( x i j ( t ) ) = x i j ( t ) + r ( x i j ( t ) − x i V ( t ) ) (6) R(x_i^j(t))=x_i^j(t)+r(x_i^j(t)-x_i^V(t))\tag{6} R(xij(t))=xij(t)+r(xij(t)xiV(t))(6)
其中: x i V x_i^V xiV​​为最好的免疫病例。

第四步:更新群体免疫群体,由 x j ( t + 1 ) x^j(t+1) xj(t+1)生成的每个免疫率生成的 f ( x j ( t + 1 ) ) f(x^j(t+1)) f(xj(t+1)),若 f ( x j ( t + 1 ) ) < f ( x j ( t ) ) f(x^j(t+1))<f(x^j(t)) f(xj(t+1))<f(xj(t)),当前的 x j ( t ) x^j(t) xj(t) x j ( t + 1 ) x^j(t+1) xj(t+1)代替。年龄矢量 A j A_j Aj随着状态向量 S j = 1 S_j=1 Sj=1增加。状态向量 S j = 1 S_j=1 Sj=1可见式(7)
S j = { 1 , f ( x j ( t + 1 ) ) < f ( x ) j ( t + 1 ) Δ f ( x ) ∧ S j = 0 ∧ i s _ C o r o n a ( x j ( t + 1 ) ) 2 , f ( x j ( t + 1 ) ) > f ( x ) j ( t + 1 ) Δ f ( x ) ∧ S j = 1 (7) S_j=\begin{cases} 1,f(x^j(t+1))<\frac{f(x)^j(t+1)}{\Delta f(x)}\wedge S_j=0\wedge is\_Corona(x^j(t+1))\\ 2,f(x^j(t+1))>\frac{f(x)^j(t+1)}{\Delta f(x)}\wedge S_j=1 \end{cases}\tag{7} Sj={1,f(xj(t+1))<Δf(x)f(x)j(t+1)Sj=0is_Corona(xj(t+1))2,f(xj(t+1))>Δf(x)f(x)j(t+1)Sj=1(7)
其中: i s _ C o r o n a ( x j ( t + 1 ) ) is\_Corona(x^j(t+1)) is_Corona(xj(t+1))是当新的 x j ( t + 1 ) x^j(t+1) xj(t+1)继承了任何感染病例的值时,它是二进制值1, Δ f ( x ) \Delta f(x) Δf(x)​​为种群免疫率的平均值。注意,如果新产生的个人免疫率高于人口的平均免疫率,则人口中的个人免疫率将根据以前计算的社会距离改变。这意味着我们的人口免疫力开始提高。如果新产生的种群足够强壮,可以对流行病免疫,那么我们就达到了群体免疫阈值。

第五步:死亡病例

若免疫率 f ( x j ( t + 1 ) ) f(x^j(t+1)) f(xj(t+1)),在当前 S j = 1 S_j=1 Sj=1的迭代次数 M a x a g e Max_{age} Maxage被感染的情况不能改善下,那么这个病例就会死亡。在那之后,它被重新生成由式 x i j = l b i + ( u b i − l b i ) ∗ r a n d x_i^j=lb_i+(ub_i-lb_i)*rand xij=lbi+(ubilbi)rand​。进一步设置 S j = A j = 0 S_j=A_j=0 Sj=Aj=0​.这可能有助于使目前的人口多样化,从而避免局部最优。

第六步:停止准则 CHIO重复步骤3到步骤6直到终止准则,这通常取决于是否达到最大迭代次数。在这种情况下,易感和免疫的病例总数占主导地位。感染的病例也消失了。

算法流程:

具体可见算法原理步骤1至6。伪代码见下图:

请添加图片描述

2.算法结果

请添加图片描述

3.参考文献

[1] Al Betar Mohammed Azmi,Alyasseri Zaid Abdi Alkareem,Awadallah Mohammed A,Abu Doush Iyad. Coronavirus herd immunity optimizer (CHIO).[J]. Neural computing & applications,2020,33(prepublish):

4.Matlab

这篇关于智能优化算法:冠状病毒群体免疫优化算法 -附代码的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1071641

相关文章

C#实现千万数据秒级导入的代码

《C#实现千万数据秒级导入的代码》在实际开发中excel导入很常见,现代社会中很容易遇到大数据处理业务,所以本文我就给大家分享一下千万数据秒级导入怎么实现,文中有详细的代码示例供大家参考,需要的朋友可... 目录前言一、数据存储二、处理逻辑优化前代码处理逻辑优化后的代码总结前言在实际开发中excel导入很

SpringBoot+RustFS 实现文件切片极速上传的实例代码

《SpringBoot+RustFS实现文件切片极速上传的实例代码》本文介绍利用SpringBoot和RustFS构建高性能文件切片上传系统,实现大文件秒传、断点续传和分片上传等功能,具有一定的参考... 目录一、为什么选择 RustFS + SpringBoot?二、环境准备与部署2.1 安装 RustF

Python实现Excel批量样式修改器(附完整代码)

《Python实现Excel批量样式修改器(附完整代码)》这篇文章主要为大家详细介绍了如何使用Python实现一个Excel批量样式修改器,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一... 目录前言功能特性核心功能界面特性系统要求安装说明使用指南基本操作流程高级功能技术实现核心技术栈关键函

Redis实现高效内存管理的示例代码

《Redis实现高效内存管理的示例代码》Redis内存管理是其核心功能之一,为了高效地利用内存,Redis采用了多种技术和策略,如优化的数据结构、内存分配策略、内存回收、数据压缩等,下面就来详细的介绍... 目录1. 内存分配策略jemalloc 的使用2. 数据压缩和编码ziplist示例代码3. 优化的

从原理到实战解析Java Stream 的并行流性能优化

《从原理到实战解析JavaStream的并行流性能优化》本文给大家介绍JavaStream的并行流性能优化:从原理到实战的全攻略,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的... 目录一、并行流的核心原理与适用场景二、性能优化的核心策略1. 合理设置并行度:打破默认阈值2. 避免装箱

Python 基于http.server模块实现简单http服务的代码举例

《Python基于http.server模块实现简单http服务的代码举例》Pythonhttp.server模块通过继承BaseHTTPRequestHandler处理HTTP请求,使用Threa... 目录测试环境代码实现相关介绍模块简介类及相关函数简介参考链接测试环境win11专业版python

Python从Word文档中提取图片并生成PPT的操作代码

《Python从Word文档中提取图片并生成PPT的操作代码》在日常办公场景中,我们经常需要从Word文档中提取图片,并将这些图片整理到PowerPoint幻灯片中,手动完成这一任务既耗时又容易出错,... 目录引言背景与需求解决方案概述代码解析代码核心逻辑说明总结引言在日常办公场景中,我们经常需要从 W

Python实战之SEO优化自动化工具开发指南

《Python实战之SEO优化自动化工具开发指南》在数字化营销时代,搜索引擎优化(SEO)已成为网站获取流量的重要手段,本文将带您使用Python开发一套完整的SEO自动化工具,需要的可以了解下... 目录前言项目概述技术栈选择核心模块实现1. 关键词研究模块2. 网站技术seo检测模块3. 内容优化分析模

使用Spring Cache本地缓存示例代码

《使用SpringCache本地缓存示例代码》缓存是提高应用程序性能的重要手段,通过将频繁访问的数据存储在内存中,可以减少数据库访问次数,从而加速数据读取,:本文主要介绍使用SpringCac... 目录一、Spring Cache简介核心特点:二、基础配置1. 添加依赖2. 启用缓存3. 缓存配置方案方案

Java实现复杂查询优化的7个技巧小结

《Java实现复杂查询优化的7个技巧小结》在Java项目中,复杂查询是开发者面临的“硬骨头”,本文将通过7个实战技巧,结合代码示例和性能对比,手把手教你如何让复杂查询变得优雅,大家可以根据需求进行选择... 目录一、复杂查询的痛点:为何你的代码“又臭又长”1.1冗余变量与中间状态1.2重复查询与性能陷阱1.