智能优化算法:冠状病毒群体免疫优化算法 -附代码

2024-06-18 07:19

本文主要是介绍智能优化算法:冠状病毒群体免疫优化算法 -附代码,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

智能优化算法:冠状病毒群体免疫优化算法

文章目录

  • 智能优化算法:冠状病毒群体免疫优化算法
    • 1.算法原理
    • 2.算法结果
    • 3.参考文献
    • 4.Matlab

摘要:冠状病毒群体免疫优化算法是于2020年提出的一种新型智能优化算法。

1.算法原理

冠状病毒群免疫优化算法(CHIO)灵感来源于应对冠状病毒大流行(2019冠状病毒疾病)的群体免疫概念。传播冠状病毒的速度取决于感染者如何与其他社会成员直接接触。为了保护社会其他成员免受这种疾病的侵害,健康专家建议社会疏远。群体免疫是当大多数群体具有免疫力时,群体达到的一种状态,这种状态可以防止疾病的传播。这些概念是根据优化概念建模的。既模仿群体免疫策略,又模仿社会距离概念。利用三种类型的个体病例进行群体免疫: 易感者、感染者和免疫者。

提出的优化算法对群体免疫策略进行了建模。

第一步初始化 CHIO和最佳化问题的参数在这一步中,最佳化问题是在目标函数的背景下建立的:
m i n f ( x ) , x ∈ [ l b , u b ] (1) minf(x),x\in[lb,ub]\tag{1} minf(x),x[lb,ub](1)
其中: l b lb lb u b ub ub​分别为搜索的上下限。

第二步:首先产生群体免疫群体 H I P HIP HIP,然后随机(或启发式)产生一组病例(个体) H I S HIS HIS。生成的病例以二维矩阵 n × H I S n×HIS n×HIS​形式存储,如下所示:
H I P = [ x 1 1 , x 2 1 , . . . , x n 1 x 1 2 , x 2 2 , . . . , x n 2 . . . , . . . , . . . , . . . x 1 H I S , x 2 H I S , . . . , x n H I S ] (2) HIP=\left[\begin{matrix}x_1^1,x_2^1,...,x_n^1\\ x_1^2,x_2^2,...,x_n^2\\ ...,...,...,...\\ x_1^{HIS},x_2^{HIS},...,x_n^{HIS} \end{matrix}\right]\tag{2} HIP=x11,x21,...,xn1x12,x22,...,xn2...,...,...,...x1HIS,x2HIS,...,xnHIS(2)
其中: x i j = l b i + ( u b i − l b i ) ∗ r a n d , i = 1 , 2 , . . , n x_i^j=lb_i+(ub_i-lb_i)*rand,i=1,2,..,n xij=lbi+(ubilbi)rand,i=1,2,..,n, H I S HIS HIS为人口数量, n n n为问题的维数。利用方程(1)计算每种情况的目标函数(或免疫率)。

第三步:冠状病毒群体免疫进化这是主要的改进循环。 x i j x_i^j xij病例的基因 x j x^j xj​​要么保持不变,要么受到社会距离的影响,其影响根据基本繁殖率 B R r BRr BRr
x i j ( t + 1 ) = { x i j ( t ) , r ≥ B R r C ( x i j ( t ) ) , r < 1 / 3 B R r N ( x i j ( t ) ) , r < 2 / 3 B R r R ( x i j ( t ) ) , r < B R r (3) x_i^j(t+1)=\begin{cases} x_i^j(t),r\geq BRr\\ C(x_i^j(t)),r<1/3BRr\\ N(x_i^j(t)),r<2/3BRr\\ R(x_i^j(t)),r<BRr \end{cases}\tag{3} xij(t+1)=xij(t),rBRrC(xij(t)),r<1/3BRrN(xij(t)),r<2/3BRrR(xij(t)),r<BRr(3)
其中: r r r为在0和1之间的随机数。 x i j ( t + 1 ) x_i^j(t+1) xij(t+1)为新基因值, x i j ( t ) x_i^j(t) xij(t)为更新前的基因值。
C ( x i j ( t ) ) = x i j ( t ) + r ∗ ( x I j ( t ) − x i c ( t ) ) (4) C(x_i^j(t))=x_i^j(t)+r*(x_I^j(t)-x_i^c(t))\tag{4} C(xij(t))=xij(t)+r(xIj(t)xic(t))(4)
其中: x i c ( t ) x_i^c(t) xic(t)为根据从感染病例随机选择的状态向量 c = { i ∣ S i = 1 } c=\{i|S_i=1\} c={iSi=1}
N ( x i j ( t ) ) = x i j ( t ) + r ( x i j ( t ) − x i m ( t ) ) (5) N(x_i^j(t))=x_i^j(t)+r(x_i^j(t)-x_i^m(t))\tag{5} N(xij(t))=xij(t)+r(xij(t)xim(t))(5)
其中: x i m ( t ) x_i^m(t) xim(t)为根据从感染病例随机选择的状态向量 m = { i ∣ S i = 0 } m=\{i|S_i=0\} m={iSi=0}
R ( x i j ( t ) ) = x i j ( t ) + r ( x i j ( t ) − x i V ( t ) ) (6) R(x_i^j(t))=x_i^j(t)+r(x_i^j(t)-x_i^V(t))\tag{6} R(xij(t))=xij(t)+r(xij(t)xiV(t))(6)
其中: x i V x_i^V xiV​​为最好的免疫病例。

第四步:更新群体免疫群体,由 x j ( t + 1 ) x^j(t+1) xj(t+1)生成的每个免疫率生成的 f ( x j ( t + 1 ) ) f(x^j(t+1)) f(xj(t+1)),若 f ( x j ( t + 1 ) ) < f ( x j ( t ) ) f(x^j(t+1))<f(x^j(t)) f(xj(t+1))<f(xj(t)),当前的 x j ( t ) x^j(t) xj(t) x j ( t + 1 ) x^j(t+1) xj(t+1)代替。年龄矢量 A j A_j Aj随着状态向量 S j = 1 S_j=1 Sj=1增加。状态向量 S j = 1 S_j=1 Sj=1可见式(7)
S j = { 1 , f ( x j ( t + 1 ) ) < f ( x ) j ( t + 1 ) Δ f ( x ) ∧ S j = 0 ∧ i s _ C o r o n a ( x j ( t + 1 ) ) 2 , f ( x j ( t + 1 ) ) > f ( x ) j ( t + 1 ) Δ f ( x ) ∧ S j = 1 (7) S_j=\begin{cases} 1,f(x^j(t+1))<\frac{f(x)^j(t+1)}{\Delta f(x)}\wedge S_j=0\wedge is\_Corona(x^j(t+1))\\ 2,f(x^j(t+1))>\frac{f(x)^j(t+1)}{\Delta f(x)}\wedge S_j=1 \end{cases}\tag{7} Sj={1,f(xj(t+1))<Δf(x)f(x)j(t+1)Sj=0is_Corona(xj(t+1))2,f(xj(t+1))>Δf(x)f(x)j(t+1)Sj=1(7)
其中: i s _ C o r o n a ( x j ( t + 1 ) ) is\_Corona(x^j(t+1)) is_Corona(xj(t+1))是当新的 x j ( t + 1 ) x^j(t+1) xj(t+1)继承了任何感染病例的值时,它是二进制值1, Δ f ( x ) \Delta f(x) Δf(x)​​为种群免疫率的平均值。注意,如果新产生的个人免疫率高于人口的平均免疫率,则人口中的个人免疫率将根据以前计算的社会距离改变。这意味着我们的人口免疫力开始提高。如果新产生的种群足够强壮,可以对流行病免疫,那么我们就达到了群体免疫阈值。

第五步:死亡病例

若免疫率 f ( x j ( t + 1 ) ) f(x^j(t+1)) f(xj(t+1)),在当前 S j = 1 S_j=1 Sj=1的迭代次数 M a x a g e Max_{age} Maxage被感染的情况不能改善下,那么这个病例就会死亡。在那之后,它被重新生成由式 x i j = l b i + ( u b i − l b i ) ∗ r a n d x_i^j=lb_i+(ub_i-lb_i)*rand xij=lbi+(ubilbi)rand​。进一步设置 S j = A j = 0 S_j=A_j=0 Sj=Aj=0​.这可能有助于使目前的人口多样化,从而避免局部最优。

第六步:停止准则 CHIO重复步骤3到步骤6直到终止准则,这通常取决于是否达到最大迭代次数。在这种情况下,易感和免疫的病例总数占主导地位。感染的病例也消失了。

算法流程:

具体可见算法原理步骤1至6。伪代码见下图:

请添加图片描述

2.算法结果

请添加图片描述

3.参考文献

[1] Al Betar Mohammed Azmi,Alyasseri Zaid Abdi Alkareem,Awadallah Mohammed A,Abu Doush Iyad. Coronavirus herd immunity optimizer (CHIO).[J]. Neural computing & applications,2020,33(prepublish):

4.Matlab

这篇关于智能优化算法:冠状病毒群体免疫优化算法 -附代码的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1071641

相关文章

使用Python构建智能BAT文件生成器的完美解决方案

《使用Python构建智能BAT文件生成器的完美解决方案》这篇文章主要为大家详细介绍了如何使用wxPython构建一个智能的BAT文件生成器,它不仅能够为Python脚本生成启动脚本,还提供了完整的文... 目录引言运行效果图项目背景与需求分析核心需求技术选型核心功能实现1. 数据库设计2. 界面布局设计3

小白也能轻松上手! 路由器设置优化指南

《小白也能轻松上手!路由器设置优化指南》在日常生活中,我们常常会遇到WiFi网速慢的问题,这主要受到三个方面的影响,首要原因是WiFi产品的配置优化不合理,其次是硬件性能的不足,以及宽带线路本身的质... 在数字化时代,网络已成为生活必需品,追剧、游戏、办公、学习都离不开稳定高速的网络。但很多人面对新路由器

Python实现MQTT通信的示例代码

《Python实现MQTT通信的示例代码》本文主要介绍了Python实现MQTT通信的示例代码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录1. 安装paho-mqtt库‌2. 搭建MQTT代理服务器(Broker)‌‌3. pytho

MySQL进行数据库审计的详细步骤和示例代码

《MySQL进行数据库审计的详细步骤和示例代码》数据库审计通过触发器、内置功能及第三方工具记录和监控数据库活动,确保安全、完整与合规,Java代码实现自动化日志记录,整合分析系统提升监控效率,本文给大... 目录一、数据库审计的基本概念二、使用触发器进行数据库审计1. 创建审计表2. 创建触发器三、Java

MySQL深分页进行性能优化的常见方法

《MySQL深分页进行性能优化的常见方法》在Web应用中,分页查询是数据库操作中的常见需求,然而,在面对大型数据集时,深分页(deeppagination)却成为了性能优化的一个挑战,在本文中,我们将... 目录引言:深分页,真的只是“翻页慢”那么简单吗?一、背景介绍二、深分页的性能问题三、业务场景分析四、

Linux进程CPU绑定优化与实践过程

《Linux进程CPU绑定优化与实践过程》Linux支持进程绑定至特定CPU核心,通过sched_setaffinity系统调用和taskset工具实现,优化缓存效率与上下文切换,提升多核计算性能,适... 目录1. 多核处理器及并行计算概念1.1 多核处理器架构概述1.2 并行计算的含义及重要性1.3 并

Python办公自动化实战之打造智能邮件发送工具

《Python办公自动化实战之打造智能邮件发送工具》在数字化办公场景中,邮件自动化是提升工作效率的关键技能,本文将演示如何使用Python的smtplib和email库构建一个支持图文混排,多附件,多... 目录前言一、基础配置:搭建邮件发送框架1.1 邮箱服务准备1.2 核心库导入1.3 基础发送函数二、

Java中的雪花算法Snowflake解析与实践技巧

《Java中的雪花算法Snowflake解析与实践技巧》本文解析了雪花算法的原理、Java实现及生产实践,涵盖ID结构、位运算技巧、时钟回拨处理、WorkerId分配等关键点,并探讨了百度UidGen... 目录一、雪花算法核心原理1.1 算法起源1.2 ID结构详解1.3 核心特性二、Java实现解析2.

Java中调用数据库存储过程的示例代码

《Java中调用数据库存储过程的示例代码》本文介绍Java通过JDBC调用数据库存储过程的方法,涵盖参数类型、执行步骤及数据库差异,需注意异常处理与资源管理,以优化性能并实现复杂业务逻辑,感兴趣的朋友... 目录一、存储过程概述二、Java调用存储过程的基本javascript步骤三、Java调用存储过程示

Visual Studio 2022 编译C++20代码的图文步骤

《VisualStudio2022编译C++20代码的图文步骤》在VisualStudio中启用C++20import功能,需设置语言标准为ISOC++20,开启扫描源查找模块依赖及实验性标... 默认创建Visual Studio桌面控制台项目代码包含C++20的import方法。右键项目的属性: