智能优化算法:寄生-捕食算法-附代码

2024-06-18 07:18

本文主要是介绍智能优化算法:寄生-捕食算法-附代码,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

智能优化算法:寄生-捕食算法

文章目录

  • 智能优化算法:寄生-捕食算法
    • 1.算法原理
      • 1.1 种群初始化
      • 1.2 筑巢阶段(鸟窝)
      • 1.3 寄生阶段(crow-cuckoo)
      • 1.4 捕食阶段(crow-cat)
    • 2.实验结果
    • 3.参考文献
    • 4.Matlab代码

摘要:寄生-捕食(Parasitism – Predation algorithm,PPA)算法是于2019年提出的,它模仿捕食者猫,布谷鸟和乌鸦之间的寄生与捕食行为,形成乌鸦-布谷鸟-猫寄生与捕食系统。该算法具有精度高,收敛速度块等特点。

1.算法原理

1.1 种群初始化

种群初始化与其他优化算法一样,在边界范围内随机初始化:
X i N e w = X i m i n + r a n d ∗ ( X i m a x − X i m i n ) (1) X_i^{New}=X_i^{min}+rand*(X_i^{max}-X_i^{min})\tag{1} XiNew=Ximin+rand(XimaxXimin)(1)

1.2 筑巢阶段(鸟窝)

初始化后,将进入筑巢期、寄生期和捕食期。一开始,乌鸦的数量会随着时间的推移而减少。嵌套阶段被评估为模拟乌鸦通过两个状态飞行。第一个状态是通过生成随机的候选乌鸦,为乌鸦 i i i​生成一个新的位置见式(2)。
X i t + 1 = X i t + L F ∗ ( X r 1 − X i t ) , i ∈ n c r o w (2) X_i^{t+1}=X_i^t+LF*(X_{r1}-X_i^t),i\in n_{crow}\tag{2} Xit+1=Xit+LF(Xr1Xit),incrow(2)
其中: r 1 r1 r1为随机数, L F LF LF为莱维飞行函数,可参见布谷鸟算法。

在筑巢阶段,利用目前最优的一组鸟巢进行更新,通过Levy飞行过程发现鸟巢解决方案。许多物种都观察到了莱维飞行,这是一种随机行走。列维飞行的步长由重尾概率分布控制通常称为Lévy分布。Lévy飞行在探索搜索空间方面优于均匀随机分布,因此用它代替均匀随机运动来模拟局部最优陷入、过早收敛的回避行为,提高了整体搜索空间的探索能力。超出维度范围的种群初始化状态按照式(3)进行。
X i , o u t n e w = X i , o u t m i n + r a n d ∗ ( X i , o u t m a x − X i , o u t m i n ) (3) X_{i,out}^{new}=X_{i,out}^{min}+rand*(X_{i,out}^{max}-X_{i,out}^{min})\tag{3} Xi,outnew=Xi,outmin+rand(Xi,outmaxXi,outmin)(3)
重新初始化“呈现种群的随机变化,以获得增强的探索和增加搜索空间[48]的多样性。”这一阶段被设计为一个纯粹的探索阶段,其中Levy飞行在第一个状态中使用,提供了在整个搜索空间中分散乌鸦的高能力。

1.3 寄生阶段(crow-cuckoo)

一开始,当捕食效率低时,猫会将布谷鸟赶尽杀出。捕食效率高,导致布谷鸟灭绝。布谷鸟的效率被假定为小/中等,而猫的效率则降低了。在此阶段,将部分乌鸦卵(宿主)替换为布谷鸟卵,布谷鸟卵与乌鸦卵相似,被发现的可能性较小。此外,根据适合度选择被寄生的巢,巢越好,被寄生的几率越大。构建新的解决方案/巢穴来取代一些巢穴,并以概率pa发现一小部分较差的巢穴。布谷鸟的新巢可以得到:
X i , n e w c u c k o o = X i , o l d c u c k o o + S G ∗ k (4) X_{i,new}^{cuckoo}=X_{i,old}^{cuckoo}+S_G*k\tag{4} Xi,newcuckoo=Xi,oldcuckoo+SGk(4)

S G = ( X r 2 − X r 3 ) ∗ r a n d (5) S_G=(X_{r2}-X_{r3})*rand \tag{5} SG=(Xr2Xr3)rand(5)

其中 X i , n e w c u c k o o X_{i,new}^{cuckoo} Xi,newcuckoo​采用轮盘选择,选择鸟巢位置, S G SG SG服从均匀高斯分布, k k k​定义为二进制矩阵,计算如下:
k = r a n d [ 0 , 1 ] > P a (6) k=rand[0,1]>Pa\tag{6} k=rand[0,1]>Pa(6)
其中: P a Pa Pa t / 2 T t/2T t/2T g / 2 G g/2G g/2G给出的递增因子,其中 t 或 g t或g tg为当前迭代次数, T T T G G G为最大迭代次数。利用二进位矩阵 k k k​尽可能地保留相当一部分旧布谷鸟,保持探索搜索空间。在寄生阶段开始时,矩阵 k k k被1填充。然后, k k k​逐渐增加,以保持种群多样性。

1.4 捕食阶段(crow-cat)

一开始,捕食效率高,导致猫、乌鸦数量爆发性增长,数量减少,无法为布谷鸟提供足够的生存资源,导致布谷鸟灭绝。此阶段基于猫的跟踪模式,可以是乌鸦-猫阶段。不需要执行搜索模式,因为猫知道搜索空间是空的,不需要搜索。在这个阶段,布谷鸟雏鸟发现了驱赶猫的令人厌恶的化合物。猫以低臭味分泌物追踪布谷鸟不在的巢,选择未寄生的巢,随机追踪模式。猫是根据自己的速度移动的每一个维度,一旦他们开始追踪猎物。猫的捕食效率高,导致猫的爆发性生长,乌鸦和布谷鸟的生长缓慢。这个阶段包括三个步骤:

步骤a:更新每个维度的速度如下:
v k , d = v k , d + r ∗ c ∗ ( x b e s t , d − x k , d ) (7) v_{k,d}=v_{k,d}+r*c*(x_{best,d}-x_{k,d})\tag{7} vk,d=vk,d+rc(xbest,dxk,d)(7)
式中: v k , d v_{k,d} vk,d​为 c a t k cat_k catk d d d维度上的速度, x b e s t , d x_{best,d} xbest,d为适应度值最好的猫的位置, x k , d x_{k,d} xk,d c a t k cat_k catk的位置, c c c为常数, r r r​为[0,1]范围内的随机数。

步骤b:检查更新速度是否超过最大速度范围。如果新的速度大于最大速度,则将其设置为等于限制(速度限制被修改为从1线性降低到0.25)。

步骤c:更新 c a t k cat_k catk的位置:
x k , d = v k , d + x k , d (8) x_{k,d}=v_{k,d}+x_{k,d} \tag{8} xk,d=vk,d+xk,d(8)
算法流程

步骤1:初始化种群及算法参数

步骤2:评估适应度函数值及确定最优解及最优鸟巢。

步骤3:计算猫群,乌鸦群和鸟巢数量。

步骤4:进入筑巢阶段,按照公式(2)和(3)更新鸟巢位置。

步骤5:进入寄生阶段,按照公式(4)和(6)更新鸟巢位置。

步骤6:进入捕食阶段,按照步骤(a)至(c)即公式(7)和(8)更新鸟巢位置。

步骤7:重新评估适应度函数值,并更新全局最优解。

步骤8:判断是否满足迭代条件,若是满足则输出最优解,否则返回步骤2重新迭代更新计算。

2.实验结果

请添加图片描述

3.参考文献

[1] A.-A. A. Mohamed, S. A. Hassan, A. M. Hemeida et al., Parasitism–Predation algorithm (PPA): A novel approach for feature selection, Ain Shams Engineering Journal.

4.Matlab代码

这篇关于智能优化算法:寄生-捕食算法-附代码的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1071637

相关文章

Python实例题之pygame开发打飞机游戏实例代码

《Python实例题之pygame开发打飞机游戏实例代码》对于python的学习者,能够写出一个飞机大战的程序代码,是不是感觉到非常的开心,:本文主要介绍Python实例题之pygame开发打飞机... 目录题目pygame-aircraft-game使用 Pygame 开发的打飞机游戏脚本代码解释初始化部

Java中Map.Entry()含义及方法使用代码

《Java中Map.Entry()含义及方法使用代码》:本文主要介绍Java中Map.Entry()含义及方法使用的相关资料,Map.Entry是Java中Map的静态内部接口,用于表示键值对,其... 目录前言 Map.Entry作用核心方法常见使用场景1. 遍历 Map 的所有键值对2. 直接修改 Ma

深入解析 Java Future 类及代码示例

《深入解析JavaFuture类及代码示例》JavaFuture是java.util.concurrent包中用于表示异步计算结果的核心接口,下面给大家介绍JavaFuture类及实例代码,感兴... 目录一、Future 类概述二、核心工作机制代码示例执行流程2. 状态机模型3. 核心方法解析行为总结:三

python获取cmd环境变量值的实现代码

《python获取cmd环境变量值的实现代码》:本文主要介绍在Python中获取命令行(cmd)环境变量的值,可以使用标准库中的os模块,需要的朋友可以参考下... 前言全局说明在执行py过程中,总要使用到系统环境变量一、说明1.1 环境:Windows 11 家庭版 24H2 26100.4061

pandas实现数据concat拼接的示例代码

《pandas实现数据concat拼接的示例代码》pandas.concat用于合并DataFrame或Series,本文主要介绍了pandas实现数据concat拼接的示例代码,具有一定的参考价值,... 目录语法示例:使用pandas.concat合并数据默认的concat:参数axis=0,join=

C#代码实现解析WTGPS和BD数据

《C#代码实现解析WTGPS和BD数据》在现代的导航与定位应用中,准确解析GPS和北斗(BD)等卫星定位数据至关重要,本文将使用C#语言实现解析WTGPS和BD数据,需要的可以了解下... 目录一、代码结构概览1. 核心解析方法2. 位置信息解析3. 经纬度转换方法4. 日期和时间戳解析5. 辅助方法二、L

Python使用Code2flow将代码转化为流程图的操作教程

《Python使用Code2flow将代码转化为流程图的操作教程》Code2flow是一款开源工具,能够将代码自动转换为流程图,该工具对于代码审查、调试和理解大型代码库非常有用,在这篇博客中,我们将深... 目录引言1nVflRA、为什么选择 Code2flow?2、安装 Code2flow3、基本功能演示

IIS 7.0 及更高版本中的 FTP 状态代码

《IIS7.0及更高版本中的FTP状态代码》本文介绍IIS7.0中的FTP状态代码,方便大家在使用iis中发现ftp的问题... 简介尝试使用 FTP 访问运行 Internet Information Services (IIS) 7.0 或更高版本的服务器上的内容时,IIS 将返回指示响应状态的数字代

MySQL 添加索引5种方式示例详解(实用sql代码)

《MySQL添加索引5种方式示例详解(实用sql代码)》在MySQL数据库中添加索引可以帮助提高查询性能,尤其是在数据量大的表中,下面给大家分享MySQL添加索引5种方式示例详解(实用sql代码),... 在mysql数据库中添加索引可以帮助提高查询性能,尤其是在数据量大的表中。索引可以在创建表时定义,也可

使用C#删除Excel表格中的重复行数据的代码详解

《使用C#删除Excel表格中的重复行数据的代码详解》重复行是指在Excel表格中完全相同的多行数据,删除这些重复行至关重要,因为它们不仅会干扰数据分析,还可能导致错误的决策和结论,所以本文给大家介绍... 目录简介使用工具C# 删除Excel工作表中的重复行语法工作原理实现代码C# 删除指定Excel单元