基于二进制正余弦算法的背包问题求解- 附代码

2024-06-18 07:18

本文主要是介绍基于二进制正余弦算法的背包问题求解- 附代码,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

基于二进制正余弦算法的背包问题求解- 附代码

文章目录

  • 基于二进制正余弦算法的背包问题求解- 附代码
    • 1.二进制正余弦算法
    • 2.背包问题
    • 3.实验结果
    • 4.参考文献
    • 5.Matlab

摘要:本文主要介绍二进制正余弦算法,并用其对背包问题进行求解。

1.二进制正余弦算法

正余弦优化算法是一种随机优化算法,具有高度的灵活性,原理简单,易于实现,可以方便地应用于不同领域的优化问题。正余弦优化算法的寻优过程可分为两个阶段,在探索阶段,优化算法通过结合某随机解在所有随机解中快速寻找搜索空间中的可行区域; 到了开发阶段,随机解会逐渐发生变化,且随机解的变化速度会低于探索阶段的速度。在正弦余弦算法中,首先候选解会被随机初始化,然后会根据正弦或者余弦函数并结合随机因子来更新当前解在每一维度上的值。其具体更新方程为:
X i t + 1 = { X i t + r 1 ∗ s i n ( r 2 ) ∗ ∣ r 3 P i t − X i t ∣ r 4 < 0.5 X i t + r 1 ∗ c o s ( r 2 ) ∗ ∣ r 3 P i t − X i t ∣ r 4 > 0.5 (1) X_{i}^{t+1}=\begin{cases}X_{i}^{t}+r_{1}*sin(r_{2})*|r_{3}P_{i}^{t}-X_{i}^{t}|\quad r_{4}<0.5\\ X_{i}^{t}+r_{1}*cos(r_{2})*|r_{3}P_{i}^{t}-X_{i}^{t}|\quad r_{4}>0.5\end{cases}\tag{1} Xit+1={Xit+r1sin(r2)r3PitXitr4<0.5Xit+r1cos(r2)r3PitXitr4>0.5(1)
式中: X i t X_{i}^{t} Xit是当前个体的第 i i i维第 t t t代的位置; r 2 r_{2} r2为0到 2 π 2\pi 2π的随机数; r 3 r_{3} r3为0到2之间的随机数; r 4 r_{4} r4为0到1的随机数, P i t P_{i}^{t} Pit表示在t次迭代时最优个体位置变量的第 i i i维的位置。
r 1 = a − t a T (2) r_{1}=a-t\frac{a}{T}\tag{2} r1=atTa(2)
式中: a a a 是一个常数; t t t 为当前迭代次数; T T T 为最大迭代次数; 参数 r 1 r_{1} r1表示下一个解的位置区域在当前解和最优解之内或者之外,较小的 r 1 r_{1} r1的值有助于增强算法的局部开发能力,较大的 r 1 r_{1} r1的值有助于提高算法的全局探索能力,同时 r 1 r_{1} r1的值随迭代次数逐渐减小,平衡了算法局部开发和全局搜索的能力; r 2 , r 3 , r 4 r_{2},r_{3},r_{4} r2,r3,r4为随机因子,参数 r 2 r_{2} r2定义了当前解朝向或者远离最优解多远; 参数 r 3 r_{3} r3为最优解给出一个随机权值,是为了随机强调 ( r 3 > 1 ) (r_{3}>1) (r31) 或者忽略 ( r 3 < 1 ) (r_{3}<1) (r31) 最优解在定义候选解移动距离时的影响效果; 参数 r 4 r_{4} r4​平等地切换正弦和余弦函数。

由于原始正余弦算法是求解连续解,为了适应背包问题,需要对其进行离散化。离散化准则如下:首先算法初始化,所有解在[-1,1]之间生成,针对这些实数,利用正负信息进行离散化,并将离散化的解作为适应度的输入,求解适应度值。
Y ( i , j ) = { 1 , X ( i , j ) ≥ 0 0 , e l s e (3) Y(i,j) = \begin{cases} 1,X(i,j)\geq0\\ 0,else \end{cases}\tag{3} Y(i,j)={1,X(i,j)00,else(3)
每次经过正余弦位置更新后,需要将X约束到[-1,1]的范围。
X ( i , j ) = { 1 , X ( i , j ) > 1 − 1 , X ( i , j ) < − 1 (4) X(i,j)=\begin{cases} 1,X(i,j)>1\\ -1,X(i,j)<-1 \end{cases}\tag{4} X(i,j)={1,X(i,j)>11,X(i,j)<1(4)

2.背包问题

背包问题的一般提法为:已知 n n n 个物品 s 1 , s 2 , . . . , s n s_1,s_2,...,s_n s1,s2,...,sn 的重量及其价值分别为 w j > 0 w_j >0 wj0 c j > 0 ( j = 1 , 2 , … , n ) c_j >0( j=1,2,…,n) cj0j1,2,,n背包的容量假设为 V > 0 V >0 V0​如何选择那些物品装入背包可使在背包的容量限制之内所装物品的总价值最大,引入变量 x j x_j xj
x j = { 1 , 物 品 放 入 背 包 0 , 否 则 (5) x_j=\begin{cases}1,物品放入背包\\ 0,否则\end{cases}\tag{5} xj={1,0,(5)
则该问题的数学模型为:
m a x ( ∑ j = 1 n ) c j x j (6) max(\sum_{j=1}^n)c_jx_j\tag{6} max(j=1n)cjxj(6)
约束条件:
{ ∑ j = 1 n w j x j ≤ V x j ∈ { 0 , 1 } , j = 1 , 2 , . . . , n (7) \begin{cases} \sum_{j=1}^nw_jx_j\leq V \\ x_j\in\{0,1\},j=1,2,...,n \end{cases} \tag{7} {j=1nwjxjVxj{0,1},j=1,2,...,n(7)

3.实验结果

背包问题的实验数据如下:

 C = [72,490,651,833,833,489,359,337,267,441,...70,934,467,661,220,329,440,774,595,98,424,...37,807,320,501,309,834,851,34,459,111,...253,159,858,793,145,651,856,400,...285,405,95,391,19,96,273,152,...473,448,231];
W = [438,754,699,587,789,...912,819,347,511,287,541,784,676,198,...572,914,988,4,355,569,144,272,531,...556,741,489,321,84,194,483,205,607,...399,747,118,651,806,9,607,121,...370,999,494,743,967,718,397,...589,193,369];
V = 11258;

二进制粒子群的参数如下:

%% 二进制正余弦算法求解
dim = length(C);%维度
pop = 50;%种群数量
MaxIter = 500;%迭代次数
fobj = @(x) fun(x,C,W,V);%适应度函数

最终结果:
请添加图片描述

背包存放结果为:0 1 1 1 1 0 0 0 1 1 0 1 1 1 0 0 0 1 1 0 1 0 1 0 1 0 1 1 0 0 1 0 0 1 1 0 1 1 0 1 1 0 1 0 0 0 0 1 1 0
总价值为:15634

4.参考文献

[1]郭晓虎,李泽文,李亚.二进制正余弦算法求解0-1背包问题[J].科技经济导刊,2019,27(25):172.

5.Matlab

这篇关于基于二进制正余弦算法的背包问题求解- 附代码的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1071636

相关文章

Vue3绑定props默认值问题

《Vue3绑定props默认值问题》使用Vue3的defineProps配合TypeScript的interface定义props类型,并通过withDefaults设置默认值,使组件能安全访问传入的... 目录前言步骤步骤1:使用 defineProps 定义 Props步骤2:设置默认值总结前言使用T

Web服务器-Nginx-高并发问题

《Web服务器-Nginx-高并发问题》Nginx通过事件驱动、I/O多路复用和异步非阻塞技术高效处理高并发,结合动静分离和限流策略,提升性能与稳定性... 目录前言一、架构1. 原生多进程架构2. 事件驱动模型3. IO多路复用4. 异步非阻塞 I/O5. Nginx高并发配置实战二、动静分离1. 职责2

Redis实现高效内存管理的示例代码

《Redis实现高效内存管理的示例代码》Redis内存管理是其核心功能之一,为了高效地利用内存,Redis采用了多种技术和策略,如优化的数据结构、内存分配策略、内存回收、数据压缩等,下面就来详细的介绍... 目录1. 内存分配策略jemalloc 的使用2. 数据压缩和编码ziplist示例代码3. 优化的

解决升级JDK报错:module java.base does not“opens java.lang.reflect“to unnamed module问题

《解决升级JDK报错:modulejava.basedoesnot“opensjava.lang.reflect“tounnamedmodule问题》SpringBoot启动错误源于Jav... 目录问题描述原因分析解决方案总结问题描述启动sprintboot时报以下错误原因分析编程异js常是由Ja

Python 基于http.server模块实现简单http服务的代码举例

《Python基于http.server模块实现简单http服务的代码举例》Pythonhttp.server模块通过继承BaseHTTPRequestHandler处理HTTP请求,使用Threa... 目录测试环境代码实现相关介绍模块简介类及相关函数简介参考链接测试环境win11专业版python

Python从Word文档中提取图片并生成PPT的操作代码

《Python从Word文档中提取图片并生成PPT的操作代码》在日常办公场景中,我们经常需要从Word文档中提取图片,并将这些图片整理到PowerPoint幻灯片中,手动完成这一任务既耗时又容易出错,... 目录引言背景与需求解决方案概述代码解析代码核心逻辑说明总结引言在日常办公场景中,我们经常需要从 W

使用Spring Cache本地缓存示例代码

《使用SpringCache本地缓存示例代码》缓存是提高应用程序性能的重要手段,通过将频繁访问的数据存储在内存中,可以减少数据库访问次数,从而加速数据读取,:本文主要介绍使用SpringCac... 目录一、Spring Cache简介核心特点:二、基础配置1. 添加依赖2. 启用缓存3. 缓存配置方案方案

MySQL 表空却 ibd 文件过大的问题及解决方法

《MySQL表空却ibd文件过大的问题及解决方法》本文给大家介绍MySQL表空却ibd文件过大的问题及解决方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考... 目录一、问题背景:表空却 “吃满” 磁盘的怪事二、问题复现:一步步编程还原异常场景1. 准备测试源表与数据

解决Nginx启动报错Job for nginx.service failed because the control process exited with error code问题

《解决Nginx启动报错Jobfornginx.servicefailedbecausethecontrolprocessexitedwitherrorcode问题》Nginx启... 目录一、报错如下二、解决原因三、解决方式总结一、报错如下Job for nginx.service failed bec

SysMain服务可以关吗? 解决SysMain服务导致的高CPU使用率问题

《SysMain服务可以关吗?解决SysMain服务导致的高CPU使用率问题》SysMain服务是超级预读取,该服务会记录您打开应用程序的模式,并预先将它们加载到内存中以节省时间,但它可能占用大量... 在使用电脑的过程中,CPU使用率居高不下是许多用户都遇到过的问题,其中名为SysMain的服务往往是罪魁