基于二进制正余弦算法的背包问题求解- 附代码

2024-06-18 07:18

本文主要是介绍基于二进制正余弦算法的背包问题求解- 附代码,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

基于二进制正余弦算法的背包问题求解- 附代码

文章目录

  • 基于二进制正余弦算法的背包问题求解- 附代码
    • 1.二进制正余弦算法
    • 2.背包问题
    • 3.实验结果
    • 4.参考文献
    • 5.Matlab

摘要:本文主要介绍二进制正余弦算法,并用其对背包问题进行求解。

1.二进制正余弦算法

正余弦优化算法是一种随机优化算法,具有高度的灵活性,原理简单,易于实现,可以方便地应用于不同领域的优化问题。正余弦优化算法的寻优过程可分为两个阶段,在探索阶段,优化算法通过结合某随机解在所有随机解中快速寻找搜索空间中的可行区域; 到了开发阶段,随机解会逐渐发生变化,且随机解的变化速度会低于探索阶段的速度。在正弦余弦算法中,首先候选解会被随机初始化,然后会根据正弦或者余弦函数并结合随机因子来更新当前解在每一维度上的值。其具体更新方程为:
X i t + 1 = { X i t + r 1 ∗ s i n ( r 2 ) ∗ ∣ r 3 P i t − X i t ∣ r 4 < 0.5 X i t + r 1 ∗ c o s ( r 2 ) ∗ ∣ r 3 P i t − X i t ∣ r 4 > 0.5 (1) X_{i}^{t+1}=\begin{cases}X_{i}^{t}+r_{1}*sin(r_{2})*|r_{3}P_{i}^{t}-X_{i}^{t}|\quad r_{4}<0.5\\ X_{i}^{t}+r_{1}*cos(r_{2})*|r_{3}P_{i}^{t}-X_{i}^{t}|\quad r_{4}>0.5\end{cases}\tag{1} Xit+1={Xit+r1sin(r2)r3PitXitr4<0.5Xit+r1cos(r2)r3PitXitr4>0.5(1)
式中: X i t X_{i}^{t} Xit是当前个体的第 i i i维第 t t t代的位置; r 2 r_{2} r2为0到 2 π 2\pi 2π的随机数; r 3 r_{3} r3为0到2之间的随机数; r 4 r_{4} r4为0到1的随机数, P i t P_{i}^{t} Pit表示在t次迭代时最优个体位置变量的第 i i i维的位置。
r 1 = a − t a T (2) r_{1}=a-t\frac{a}{T}\tag{2} r1=atTa(2)
式中: a a a 是一个常数; t t t 为当前迭代次数; T T T 为最大迭代次数; 参数 r 1 r_{1} r1表示下一个解的位置区域在当前解和最优解之内或者之外,较小的 r 1 r_{1} r1的值有助于增强算法的局部开发能力,较大的 r 1 r_{1} r1的值有助于提高算法的全局探索能力,同时 r 1 r_{1} r1的值随迭代次数逐渐减小,平衡了算法局部开发和全局搜索的能力; r 2 , r 3 , r 4 r_{2},r_{3},r_{4} r2,r3,r4为随机因子,参数 r 2 r_{2} r2定义了当前解朝向或者远离最优解多远; 参数 r 3 r_{3} r3为最优解给出一个随机权值,是为了随机强调 ( r 3 > 1 ) (r_{3}>1) (r31) 或者忽略 ( r 3 < 1 ) (r_{3}<1) (r31) 最优解在定义候选解移动距离时的影响效果; 参数 r 4 r_{4} r4​平等地切换正弦和余弦函数。

由于原始正余弦算法是求解连续解,为了适应背包问题,需要对其进行离散化。离散化准则如下:首先算法初始化,所有解在[-1,1]之间生成,针对这些实数,利用正负信息进行离散化,并将离散化的解作为适应度的输入,求解适应度值。
Y ( i , j ) = { 1 , X ( i , j ) ≥ 0 0 , e l s e (3) Y(i,j) = \begin{cases} 1,X(i,j)\geq0\\ 0,else \end{cases}\tag{3} Y(i,j)={1,X(i,j)00,else(3)
每次经过正余弦位置更新后,需要将X约束到[-1,1]的范围。
X ( i , j ) = { 1 , X ( i , j ) > 1 − 1 , X ( i , j ) < − 1 (4) X(i,j)=\begin{cases} 1,X(i,j)>1\\ -1,X(i,j)<-1 \end{cases}\tag{4} X(i,j)={1,X(i,j)>11,X(i,j)<1(4)

2.背包问题

背包问题的一般提法为:已知 n n n 个物品 s 1 , s 2 , . . . , s n s_1,s_2,...,s_n s1,s2,...,sn 的重量及其价值分别为 w j > 0 w_j >0 wj0 c j > 0 ( j = 1 , 2 , … , n ) c_j >0( j=1,2,…,n) cj0j1,2,,n背包的容量假设为 V > 0 V >0 V0​如何选择那些物品装入背包可使在背包的容量限制之内所装物品的总价值最大,引入变量 x j x_j xj
x j = { 1 , 物 品 放 入 背 包 0 , 否 则 (5) x_j=\begin{cases}1,物品放入背包\\ 0,否则\end{cases}\tag{5} xj={1,0,(5)
则该问题的数学模型为:
m a x ( ∑ j = 1 n ) c j x j (6) max(\sum_{j=1}^n)c_jx_j\tag{6} max(j=1n)cjxj(6)
约束条件:
{ ∑ j = 1 n w j x j ≤ V x j ∈ { 0 , 1 } , j = 1 , 2 , . . . , n (7) \begin{cases} \sum_{j=1}^nw_jx_j\leq V \\ x_j\in\{0,1\},j=1,2,...,n \end{cases} \tag{7} {j=1nwjxjVxj{0,1},j=1,2,...,n(7)

3.实验结果

背包问题的实验数据如下:

 C = [72,490,651,833,833,489,359,337,267,441,...70,934,467,661,220,329,440,774,595,98,424,...37,807,320,501,309,834,851,34,459,111,...253,159,858,793,145,651,856,400,...285,405,95,391,19,96,273,152,...473,448,231];
W = [438,754,699,587,789,...912,819,347,511,287,541,784,676,198,...572,914,988,4,355,569,144,272,531,...556,741,489,321,84,194,483,205,607,...399,747,118,651,806,9,607,121,...370,999,494,743,967,718,397,...589,193,369];
V = 11258;

二进制粒子群的参数如下:

%% 二进制正余弦算法求解
dim = length(C);%维度
pop = 50;%种群数量
MaxIter = 500;%迭代次数
fobj = @(x) fun(x,C,W,V);%适应度函数

最终结果:
请添加图片描述

背包存放结果为:0 1 1 1 1 0 0 0 1 1 0 1 1 1 0 0 0 1 1 0 1 0 1 0 1 0 1 1 0 0 1 0 0 1 1 0 1 1 0 1 1 0 1 0 0 0 0 1 1 0
总价值为:15634

4.参考文献

[1]郭晓虎,李泽文,李亚.二进制正余弦算法求解0-1背包问题[J].科技经济导刊,2019,27(25):172.

5.Matlab

这篇关于基于二进制正余弦算法的背包问题求解- 附代码的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/1071636

相关文章

Windows环境下解决Matplotlib中文字体显示问题的详细教程

《Windows环境下解决Matplotlib中文字体显示问题的详细教程》本文详细介绍了在Windows下解决Matplotlib中文显示问题的方法,包括安装字体、更新缓存、配置文件设置及编码調整,并... 目录引言问题分析解决方案详解1. 检查系统已安装字体2. 手动添加中文字体(以SimHei为例)步骤

SpringSecurity整合redission序列化问题小结(最新整理)

《SpringSecurity整合redission序列化问题小结(最新整理)》文章详解SpringSecurity整合Redisson时的序列化问题,指出需排除官方Jackson依赖,通过自定义反序... 目录1. 前言2. Redission配置2.1 RedissonProperties2.2 Red

nginx 负载均衡配置及如何解决重复登录问题

《nginx负载均衡配置及如何解决重复登录问题》文章详解Nginx源码安装与Docker部署,介绍四层/七层代理区别及负载均衡策略,通过ip_hash解决重复登录问题,对nginx负载均衡配置及如何... 目录一:源码安装:1.配置编译参数2.编译3.编译安装 二,四层代理和七层代理区别1.二者混合使用举例

怎样通过分析GC日志来定位Java进程的内存问题

《怎样通过分析GC日志来定位Java进程的内存问题》:本文主要介绍怎样通过分析GC日志来定位Java进程的内存问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、GC 日志基础配置1. 启用详细 GC 日志2. 不同收集器的日志格式二、关键指标与分析维度1.

Java 线程安全与 volatile与单例模式问题及解决方案

《Java线程安全与volatile与单例模式问题及解决方案》文章主要讲解线程安全问题的五个成因(调度随机、变量修改、非原子操作、内存可见性、指令重排序)及解决方案,强调使用volatile关键字... 目录什么是线程安全线程安全问题的产生与解决方案线程的调度是随机的多个线程对同一个变量进行修改线程的修改操

Java中的雪花算法Snowflake解析与实践技巧

《Java中的雪花算法Snowflake解析与实践技巧》本文解析了雪花算法的原理、Java实现及生产实践,涵盖ID结构、位运算技巧、时钟回拨处理、WorkerId分配等关键点,并探讨了百度UidGen... 目录一、雪花算法核心原理1.1 算法起源1.2 ID结构详解1.3 核心特性二、Java实现解析2.

Redis出现中文乱码的问题及解决

《Redis出现中文乱码的问题及解决》:本文主要介绍Redis出现中文乱码的问题及解决,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1. 问题的产生2China编程. 问题的解决redihttp://www.chinasem.cns数据进制问题的解决中文乱码问题解决总结

Java中调用数据库存储过程的示例代码

《Java中调用数据库存储过程的示例代码》本文介绍Java通过JDBC调用数据库存储过程的方法,涵盖参数类型、执行步骤及数据库差异,需注意异常处理与资源管理,以优化性能并实现复杂业务逻辑,感兴趣的朋友... 目录一、存储过程概述二、Java调用存储过程的基本javascript步骤三、Java调用存储过程示

Visual Studio 2022 编译C++20代码的图文步骤

《VisualStudio2022编译C++20代码的图文步骤》在VisualStudio中启用C++20import功能,需设置语言标准为ISOC++20,开启扫描源查找模块依赖及实验性标... 默认创建Visual Studio桌面控制台项目代码包含C++20的import方法。右键项目的属性:

全面解析MySQL索引长度限制问题与解决方案

《全面解析MySQL索引长度限制问题与解决方案》MySQL对索引长度设限是为了保持高效的数据检索性能,这个限制不是MySQL的缺陷,而是数据库设计中的权衡结果,下面我们就来看看如何解决这一问题吧... 目录引言:为什么会有索引键长度问题?一、问题根源深度解析mysql索引长度限制原理实际场景示例二、五大解决