基于麻雀算法优化的相关向量机RVM回归预测算法

2024-06-18 07:18

本文主要是介绍基于麻雀算法优化的相关向量机RVM回归预测算法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

基于麻雀算法优化的相关向量机RVM回归预测算法

文章目录

  • 基于麻雀算法优化的相关向量机RVM回归预测算法
    • 1.RVM原理
    • 2.基于麻雀算法优化的相关向量机RVM
    • 3.算法实验与结果
    • 3.参考文献:
    • 4.MATLAB代码

摘要:本文主要介绍相关向量机RVM的基本原理,以及在预测问题中的应用。

1.RVM原理

RVM算法是一种基于贝叶斯框架的机器学习模型 ,通过最大化边际似然得到相关向量和权重。

{ x } u = 1 N \{x\}_{u=1}^N {x}u=1N​和 { t } u = 1 N \{t\}_{u=1}^N {t}u=1N​分别是输入向量和输出向量,目标 t t t​可采用如式(1)所示的回归模型获得:
t = y ( x ) + ξ n (1) t =y(x)+\xi_n \tag{1} t=y(x)+ξn(1)
式中: ξ n \xi_n ξn为零均值、方差 σ 2 σ^2 σ2的噪声, y ( x ) y(x) y(x) 定义为:
y ( x ) = ∑ u = 1 N w u K ( x , x u ) + w 0 (2) y(x)=\sum_{u=1}^Nw_uK(x,x_u)+w_0 \tag{2} y(x)=u=1NwuK(x,xu)+w0(2)
式中: K ( x , x u ) K(x,x_u) K(x,xu) 是核函数, w u w_u wu 是权重向量, w 0 w_0 w0是偏差。设 t t t​是独立的,其概率定义为:
p ( t ∣ w , σ 2 ) = ( 2 π σ 2 ) − N / 2 e x p ( − ∣ ∣ t − w φ ∣ ∣ 2 2 σ 2 ) (3) p(t|w,\sigma^2)=(2\pi\sigma^2)^{-N/2}exp(-\frac{||t-w\varphi||^2}{2\sigma^2})\tag{3} p(tw,σ2)=(2πσ2)N/2exp(2σ2twφ2)(3)
式中: t = ( t 1 , t 2 , . . . , t N ) T , w = ( w 0 , w 1 , . . . , w n ) T t=(t_1,t_2,...,t_N)^T,w=(w_0,w_1,...,w_n)^T t=(t1,t2,...,tN)T,w=(w0,w1,...,wn)T, φ \varphi φ N ( N + 1 ) N(N+1) N(N+1)​的矩阵。

式(3)中的 w w w σ σ σ最大似然估计会导致过拟合,为约束参数,定义一个零均值高斯先验概率分布:
p ( w ∣ α ) = ∏ u = 0 N N ( w u ∣ 0 , α u − 1 ) (4) p(w|\alpha)=\prod_{u=0}^NN(w_u|0,\alpha_u^{-1})\tag{4} p(wα)=u=0NN(wu0,αu1)(4)
式中: α α α N + 1 N +1 N+1 维的超参数向量。

依据贝叶斯公式,未知参数的后验概率为:
p ( w , α , σ 2 ∣ t ) = p ( w ∣ α , σ 2 , t ) p ( α , σ 2 ∣ t ) (5) p(w,\alpha,\sigma^2|t)=p(w|\alpha,\sigma^2,t)p(\alpha,\sigma^2|t)\tag{5} p(w,α,σ2t)=p(wα,σ2,t)p(α,σ2t)(5)
后验分布的权重被描述为:
p ( w ∣ t , α , σ 2 ) = ( 2 π ) − ( N + 1 ) / 2 ∣ Σ ∣ − 1 / N e x p ( − 1 2 ( w − u ) T Σ − 1 ( w − u ) ) (6) p(w|t,\alpha,\sigma^2)=(2\pi)^{-(N+1)/2}|\Sigma|^{-1/N}exp(-\frac{1}{2}(w-u)^T\Sigma ^{-1}(w-u))\tag{6} p(wt,α,σ2)=(2π)(N+1)/2Σ1/Nexp(21(wu)TΣ1(wu))(6)
式中:后验均值 u = σ − 2 Σ φ T t u=\sigma^{-2}\Sigma\varphi^Tt u=σ2ΣφTt,协方差 Σ = ( σ − 2 φ T φ + A ) − 1 \Sigma=(\sigma^{-2}\varphi^T\varphi+A)^{-1} Σ=(σ2φTφ+A)1, A = d i a g ( α 0 , α 1 , . . . , α N ) A=diag(\alpha_0,\alpha_1,...,\alpha_N) A=diag(α0,α1,...,αN)​。

为了实现统一的超参数,​做出如下定义:
p ( t ∣ α , σ 2 ) = ∫ p ( t ∣ w , σ 2 ) p ( w , α ) d w = ( 2 π ) − N / 2 ∣ σ 2 I + φ A − 1 φ T ∣ e x p ( − 1 2 t T ( σ 2 I + φ A − 1 φ T ) − 1 t ) (7) p(t|\alpha,\sigma^2)=\int p(t|w,\sigma^2)p(w,\alpha)dw =(2\pi)^{-N/2}|\sigma^2I+\varphi A^{-1}\varphi^T|exp(-\frac{1}{2}t^T(\sigma^2I + \varphi A^{-1}\varphi^T)^{-1}t)\tag{7} p(tα,σ2)=p(tw,σ2)p(w,α)dw=(2π)N/2σ2I+φA1φTexp(21tT(σ2I+φA1φT)1t)(7)
高斯径向基函数具有较强的非线性处理能力,被用作核函数,其定义如下:
K ( x , x u ) = e x p ( − ( x − x u ) 2 2 γ 2 ) (7) K(x,x_u)=exp(-\frac{(x-x_u)^2}{2\gamma^2})\tag{7} K(x,xu)=exp(2γ2(xxu)2)(7)
式中: γ γ γ 为宽度因子,对模型的精度有极大的影响,需要预先设定。

2.基于麻雀算法优化的相关向量机RVM

麻雀算法的基本原理请参考我的博客:https://blog.csdn.net/u011835903/article/details/108830958

本文利用麻雀算法优化RVM的宽度因子和超参数。适应度函数设计为训练集预测结果与真实值的MSE。MSE越低表明算法的预测性能越好。
f i t n e s s = M S E ( P r e d i c t − t r u t h ) (8) fitness = MSE(Predict - truth) \tag{8} fitness=MSE(Predicttruth)(8)

3.算法实验与结果

本文算法数据数量一共为250组数据。其中前200组数据用训练,后50组数据用作测试数据。数据的输入维度为2维,输出维度为1维。

数据类别数据量
训练数据200
测试数据50

设置麻雀算法的参数如下:

%% 麻雀参数设置
pop=20; %种群数量
Max_iteration=20; %  设定最大迭代次数
dim = 3;% 维度为2,即优化两个超参数,已经核宽度
lb = [0.1,0.1,0.1];%下边界
ub = [1,1,10];%上边界

请添加图片描述
请添加图片描述
请添加图片描述

RVM训练集MSE:0.0010558
RVM测试集MSE:0.0016356
SSA-RVM训练集MSE:3.1329e-06
SSA-RVM测试集MSE:5.2491e-06

从结果曲线,和训练集MSE以及测试集MSE来看,SSA-RVM相比基础RVM在回归预测问题上表现了较好的结果。

3.参考文献:

[1] TIPPPING M E. Sparse Bayesian learning and the relevance vector machine[J]. The journal of machine learning research,2001,1: 211-244.

4.MATLAB代码

在这里插入图片描述

这篇关于基于麻雀算法优化的相关向量机RVM回归预测算法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1071635

相关文章

小白也能轻松上手! 路由器设置优化指南

《小白也能轻松上手!路由器设置优化指南》在日常生活中,我们常常会遇到WiFi网速慢的问题,这主要受到三个方面的影响,首要原因是WiFi产品的配置优化不合理,其次是硬件性能的不足,以及宽带线路本身的质... 在数字化时代,网络已成为生活必需品,追剧、游戏、办公、学习都离不开稳定高速的网络。但很多人面对新路由器

MySQL深分页进行性能优化的常见方法

《MySQL深分页进行性能优化的常见方法》在Web应用中,分页查询是数据库操作中的常见需求,然而,在面对大型数据集时,深分页(deeppagination)却成为了性能优化的一个挑战,在本文中,我们将... 目录引言:深分页,真的只是“翻页慢”那么简单吗?一、背景介绍二、深分页的性能问题三、业务场景分析四、

Linux进程CPU绑定优化与实践过程

《Linux进程CPU绑定优化与实践过程》Linux支持进程绑定至特定CPU核心,通过sched_setaffinity系统调用和taskset工具实现,优化缓存效率与上下文切换,提升多核计算性能,适... 目录1. 多核处理器及并行计算概念1.1 多核处理器架构概述1.2 并行计算的含义及重要性1.3 并

Java中的雪花算法Snowflake解析与实践技巧

《Java中的雪花算法Snowflake解析与实践技巧》本文解析了雪花算法的原理、Java实现及生产实践,涵盖ID结构、位运算技巧、时钟回拨处理、WorkerId分配等关键点,并探讨了百度UidGen... 目录一、雪花算法核心原理1.1 算法起源1.2 ID结构详解1.3 核心特性二、Java实现解析2.

MyBatisPlus如何优化千万级数据的CRUD

《MyBatisPlus如何优化千万级数据的CRUD》最近负责的一个项目,数据库表量级破千万,每次执行CRUD都像走钢丝,稍有不慎就引起数据库报警,本文就结合这个项目的实战经验,聊聊MyBatisPl... 目录背景一、MyBATis Plus 简介二、千万级数据的挑战三、优化 CRUD 的关键策略1. 查

CSS3中的字体及相关属性详解

《CSS3中的字体及相关属性详解》:本文主要介绍了CSS3中的字体及相关属性,详细内容请阅读本文,希望能对你有所帮助... 字体网页字体的三个来源:用户机器上安装的字体,放心使用。保存在第三方网站上的字体,例如Typekit和Google,可以link标签链接到你的页面上。保存在你自己Web服务器上的字

SpringBoot中HTTP连接池的配置与优化

《SpringBoot中HTTP连接池的配置与优化》这篇文章主要为大家详细介绍了SpringBoot中HTTP连接池的配置与优化的相关知识,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一... 目录一、HTTP连接池的核心价值二、Spring Boot集成方案方案1:Apache HttpCl

使用雪花算法产生id导致前端精度缺失问题解决方案

《使用雪花算法产生id导致前端精度缺失问题解决方案》雪花算法由Twitter提出,设计目的是生成唯一的、递增的ID,下面:本文主要介绍使用雪花算法产生id导致前端精度缺失问题的解决方案,文中通过代... 目录一、问题根源二、解决方案1. 全局配置Jackson序列化规则2. 实体类必须使用Long封装类3.

PyTorch高级特性与性能优化方式

《PyTorch高级特性与性能优化方式》:本文主要介绍PyTorch高级特性与性能优化方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、自动化机制1.自动微分机制2.动态计算图二、性能优化1.内存管理2.GPU加速3.多GPU训练三、分布式训练1.分布式数据

MySQL中like模糊查询的优化方案

《MySQL中like模糊查询的优化方案》在MySQL中,like模糊查询是一种常用的查询方式,但在某些情况下可能会导致性能问题,本文将介绍八种优化MySQL中like模糊查询的方法,需要的朋友可以参... 目录1. 避免以通配符开头的查询2. 使用全文索引(Full-text Index)3. 使用前缀索