计算机毕业设计Python+Vue.js知识图谱音乐推荐系统 音乐爬虫可视化 音乐数据分析 大数据毕设 大数据毕业设计 机器学习 深度学习 人工智能

本文主要是介绍计算机毕业设计Python+Vue.js知识图谱音乐推荐系统 音乐爬虫可视化 音乐数据分析 大数据毕设 大数据毕业设计 机器学习 深度学习 人工智能,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

开发技术
协同过滤算法、机器学习、LSTM、vue.js、echarts、django、Python、MySQL


创新点
协同过滤推荐算法、爬虫、数据可视化、LSTM情感分析、短信、身份证识别


补充说明
适合大数据毕业设计、数据分析、爬虫类计算机毕业设计


介绍

  • 音乐数据的爬取:爬取歌曲、歌手、歌词、评论
  • 音乐数据的可视化:数据大屏+多种分析图【十几个图】
  • 深度学习之LSTM 音乐评论情感分析
  • 交互式协同过滤音乐推荐: 2种协同过滤算法、通过点击歌曲喜欢来修改用户对歌曲的评分
  • 歌词、乐评的词云
  • 登录、注册、修改个人信息等【集成身份证识别、短信验证码等】

核心算法代码分享如下:

# coding = utf-8# 基于项目的协同过滤推荐算法实现
import randomimport math
import pymysql                          #数据库
from operator import itemgetterfrom config import cnnclass ItemBasedCF():# 初始化参数def __init__(self):# 找到相似的8个,为目标用户推荐4个self.n_sim_movie = 8self.n_rec_movie = 4# 将数据集划分为训练集和测试集self.trainSet = {}self.testSet = {}# 用户相似度矩阵self.movie_sim_matrix = {}self.movie_popular = {}self.movie_count = 0print('Similar movie number = %d' % self.n_sim_movie)print('Recommneded movie number = %d' % self.n_rec_movie)# 从数据库得到“用户-物品”数据def get_dataset(self, pivot=0.75):trainSet_len = 0testSet_len = 0cnn.ping(reconnect=True)cursor = cnn.cursor()sql = ' select * from tb_rate'cursor.execute(sql)for item in cursor.fetchall():user, movie, rating = item[1:]self.trainSet.setdefault(user, {})self.trainSet[user][movie] = ratingtrainSet_len += 1self.testSet.setdefault(user, {})self.testSet[user][movie] = ratingtestSet_len += 1cursor.close()# cnn.close()print('Split trainingSet and testSet success!')print('TrainSet = %s' % trainSet_len)print('TestSet = %s' % testSet_len)# 读文件,返回文件的每一行def load_file(self, filename):with open(filename, 'r') as f:for i, line in enumerate(f):if i == 0:  # 去掉文件第一行的titlecontinueyield line.strip('\r\n')print('Load %s success!' % filename)# 计算物品之间的相似度def calc_movie_sim(self):for user, movies in self.trainSet.items():for movie in movies:if movie not in self.movie_popular:self.movie_popular[movie] = 0self.movie_popular[movie] += 1self.movie_count = len(self.movie_popular)print("Total movie number = %d" % self.movie_count)for user, movies in self.trainSet.items():for m1 in movies:for m2 in movies:if m1 == m2:continueself.movie_sim_matrix.setdefault(m1, {})self.movie_sim_matrix[m1].setdefault(m2, 0)self.movie_sim_matrix[m1][m2] += 1print("Build co-rated users matrix success!")# 计算物品之间的相似性 similarity matrixprint("Calculating movie similarity matrix ...")for m1, related_movies in self.movie_sim_matrix.items():for m2, count in related_movies.items():# 注意0向量的处理,即某物品的用户数为0if self.movie_popular[m1] == 0 or self.movie_popular[m2] == 0:self.movie_sim_matrix[m1][m2] = 0else:self.movie_sim_matrix[m1][m2] = count / math.sqrt(self.movie_popular[m1] * self.movie_popular[m2])print('Calculate movie similarity matrix success!')# 针对目标用户U,找到K部相似的物品,并推荐其N部物品def recommend(self, user):K = self.n_sim_movieN = self.n_rec_movierank = {}if user>len(self.trainSet):user = random.randint(1, len(self.trainSet))watched_movies = self.trainSet[user]for movie, rating in watched_movies.items():for related_movie, w in sorted(self.movie_sim_matrix[movie].items(), key=itemgetter(1), reverse=True)[:K]:if related_movie in watched_movies:continuerank.setdefault(related_movie, 0)rank[related_movie] += w * float(rating)return sorted(rank.items(), key=itemgetter(1), reverse=True)[:N]# 产生推荐并通过准确率、召回率和覆盖率进行评估def evaluate(self):print('Evaluating start ...')N = self.n_rec_movie# 准确率和召回率hit = 0rec_count = 0test_count = 0# 覆盖率all_rec_movies = set()for i, user in enumerate(self.trainSet):test_moives = self.testSet.get(user, {})rec_movies = self.recommend(user)for movie, w in rec_movies:if movie in test_moives:hit += 1all_rec_movies.add(movie)rec_count += Ntest_count += len(test_moives)precision = hit / (1.0 * rec_count)recall = hit / (1.0 * test_count)coverage = len(all_rec_movies) / (1.0 * self.movie_count)print('precisioin=%.4f\trecall=%.4f\tcoverage=%.4f' % (precision, recall, coverage))def rec_one(self,userId):print('推荐一个')rec_movies = self.recommend(userId)# print(rec_movies)return rec_movies# itemCF 推荐算法接口
def recommend(userId):itemCF = ItemBasedCF()itemCF.get_dataset()itemCF.calc_movie_sim()reclist = []recs = itemCF.rec_one(userId)return recs# for movie, rate in recs:#     # print(movie, rate)#     reclist.append(dict(item=movie, rate=rate))# # itemCF.evaluate()# return reclist# 测试
if __name__ == '__main__':print(recommend(1))

这篇关于计算机毕业设计Python+Vue.js知识图谱音乐推荐系统 音乐爬虫可视化 音乐数据分析 大数据毕设 大数据毕业设计 机器学习 深度学习 人工智能的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1071633

相关文章

SpringBoot多环境配置数据读取方式

《SpringBoot多环境配置数据读取方式》SpringBoot通过环境隔离机制,支持properties/yaml/yml多格式配置,结合@Value、Environment和@Configura... 目录一、多环境配置的核心思路二、3种配置文件格式详解2.1 properties格式(传统格式)1.

Python实现网格交易策略的过程

《Python实现网格交易策略的过程》本文讲解Python网格交易策略,利用ccxt获取加密货币数据及backtrader回测,通过设定网格节点,低买高卖获利,适合震荡行情,下面跟我一起看看我们的第一... 网格交易是一种经典的量化交易策略,其核心思想是在价格上下预设多个“网格”,当价格触发特定网格时执行买

Python标准库之数据压缩和存档的应用详解

《Python标准库之数据压缩和存档的应用详解》在数据处理与存储领域,压缩和存档是提升效率的关键技术,Python标准库提供了一套完整的工具链,下面小编就来和大家简单介绍一下吧... 目录一、核心模块架构与设计哲学二、关键模块深度解析1.tarfile:专业级归档工具2.zipfile:跨平台归档首选3.

使用Python构建智能BAT文件生成器的完美解决方案

《使用Python构建智能BAT文件生成器的完美解决方案》这篇文章主要为大家详细介绍了如何使用wxPython构建一个智能的BAT文件生成器,它不仅能够为Python脚本生成启动脚本,还提供了完整的文... 目录引言运行效果图项目背景与需求分析核心需求技术选型核心功能实现1. 数据库设计2. 界面布局设计3

解决pandas无法读取csv文件数据的问题

《解决pandas无法读取csv文件数据的问题》本文讲述作者用Pandas读取CSV文件时因参数设置不当导致数据错位,通过调整delimiter和on_bad_lines参数最终解决问题,并强调正确参... 目录一、前言二、问题复现1. 问题2. 通过 on_bad_lines=‘warn’ 跳过异常数据3

Python进行JSON和Excel文件转换处理指南

《Python进行JSON和Excel文件转换处理指南》在数据交换与系统集成中,JSON与Excel是两种极为常见的数据格式,本文将介绍如何使用Python实现将JSON转换为格式化的Excel文件,... 目录将 jsON 导入为格式化 Excel将 Excel 导出为结构化 JSON处理嵌套 JSON:

Python操作PDF文档的主流库使用指南

《Python操作PDF文档的主流库使用指南》PDF因其跨平台、格式固定的特性成为文档交换的标准,然而,由于其复杂的内部结构,程序化操作PDF一直是个挑战,本文主要为大家整理了Python操作PD... 目录一、 基础操作1.PyPDF2 (及其继任者 pypdf)2.PyMuPDF / fitz3.Fre

python设置环境变量路径实现过程

《python设置环境变量路径实现过程》本文介绍设置Python路径的多种方法:临时设置(Windows用`set`,Linux/macOS用`export`)、永久设置(系统属性或shell配置文件... 目录设置python路径的方法临时设置环境变量(适用于当前会话)永久设置环境变量(Windows系统

python中列表应用和扩展性实用详解

《python中列表应用和扩展性实用详解》文章介绍了Python列表的核心特性:有序数据集合,用[]定义,元素类型可不同,支持迭代、循环、切片,可执行增删改查、排序、推导式及嵌套操作,是常用的数据处理... 目录1、列表定义2、格式3、列表是可迭代对象4、列表的常见操作总结1、列表定义是处理一组有序项目的

python运用requests模拟浏览器发送请求过程

《python运用requests模拟浏览器发送请求过程》模拟浏览器请求可选用requests处理静态内容,selenium应对动态页面,playwright支持高级自动化,设置代理和超时参数,根据需... 目录使用requests库模拟浏览器请求使用selenium自动化浏览器操作使用playwright