基于麻雀算法改进的DELM预测-附代码

2024-06-18 07:08

本文主要是介绍基于麻雀算法改进的DELM预测-附代码,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

麻雀算法改进的深度极限学习机DELM的回归预测

文章目录

  • 麻雀算法改进的深度极限学习机DELM的回归预测
    • 1.ELM原理
    • 2.深度极限学习机(DELM)原理
    • 3.麻雀算法
    • 4.麻雀算法改进DELM
    • 5.实验结果
    • 6.参考文献
    • 7.Matlab代码

1.ELM原理

ELM基础原理请参考:https://blog.csdn.net/u011835903/article/details/111073635。

自动编码器 AE(Auto Encoder)经过训练可以将输入复制到输出。因为不需要标记数据,训练自动编码器是不受监督的。因此,将AE的思想应用到ELM中,使ELM的输入数据同样被用于输出,即输出Y=X。作为自编码器的极限学习机ELM-AE网络结构如图1所示。

请添加图片描述

图1.ELM-AE网络结构图

若图1中m>L ,ELM-AE实现维度压缩,将高维度数据映射成低维度特征表达;若 m=L,ELM-AE实现等维度的特征表达;若 m<L ,ELM-AE实现稀疏表达,即原始数据的高维特征表达。

综上,ELM-AE是一个通用的逼近器,特点就是使网络的输出与输入相同,而且隐藏层的输入参数 ( a i , b i ) (a_i,b_i) (ai,bi)​​随机生成后正交。正交化后的优点有:

(1)根 据 J-L(Johnson-Lindensrauss) 定理,权重和偏置正交化可以将输入数据映射到不同或等维度的空间,从而实现不同功能的特征表达。

(2)权重和偏置的正交化设计可以去除特征以外的噪声,使特征之间均匀,且更加线性独立进而增强系统的泛化能力。

ELM-AE的输出可以用如下表达式表示:
x j = ∑ i = 1 L β i G ( a i , b i , x j ) , a i ∈ R m , β i ∈ R m , j = 1 , 2 , . . . , N , a T a = I , b T b = 1 (1) x_j=\sum_{i=1}^L \beta_iG(a_i,b_i,x_j),a_i\in R^m,\beta_i\in R^m,j=1,2,...,N,a^Ta=I,b^Tb=1 \tag{1} xj=i=1LβiG(ai,bi,xj),aiRm,βiRm,j=1,2,...,N,aTa=I,bTb=1(1)
其中 a a a a i a_i ai组成的矩阵, b b b b i b_i bi​组成的向量。隐藏层的输出权重为:
β = ( I C + H T H ) − 1 H T X (2) \beta = (\frac{I}{C}+H^TH)^{-1}HTX \tag{2} β=(CI+HTH)1HTX(2)
其中, X = [ x 1 , . . . , x N ] X=[x_1,...,x_N] X=[x1,...,xN]是输入数据。

2.深度极限学习机(DELM)原理

根据ELM-AE的特征表示能力,将它作为深度极限学习机 DELM的基本单元。与传统深度学习算法相同,DELM 也是用逐层贪婪的训练方法来训练网络,DELM每个隐藏层的输入权重都使用ELM-AE初始化,执行分层无监督训练,但是与传统深度学习算法不同的是DELM不需要反向微调过程。

请添加图片描述

图2.DELM模型训练过程

DELM的思想是通过最大限度地降低重构误差使输出可以无限接近原始输入,经过每一层的训练,可以学习到原始数据的高级特征。图2描述了DELM模型的训练过程,将输入数据样本X作为第1个ELM-AE的目标输出( X 1 = X X_1 =X X1=X​​),进而求取输出权值 β 1 β_1 β1​​ ;然后将DELM第1个隐藏层的输出矩阵 H 1 H_1 H1​​当作下1个 E L M − A E ELM-AE ELMAE​的输入与目标输出( X 2 = X X_2=X X2=X​),依次类推逐层训练,最后1层用 E L M ELM ELM​​​来训练,使用式(2)来求解DELM的最后1个隐藏层的输出权重 β i + 1 \beta_{i+1} βi+1​​ 。图2中 H i + 1 H_{i+1} Hi+1​​ 是最后1个隐藏层的输出矩阵,T是样本标签。 H i + 1 H_{i+1} Hi+1​每1层隐藏层的输入权重矩阵为 W i + 1 = β i + 1 T W_{i+1}=\beta_{i+1}^T Wi+1=βi+1T​。

3.麻雀算法

麻雀搜索算法的具体原理参考博客:https://blog.csdn.net/u011835903/article/details/108830958。

4.麻雀算法改进DELM

由上述原理可知原始DELM中的,权重采用随机初始化的方式进行初始化,而初始权重对于整个模型的预测结果影响比较大,于是采用麻雀算法对DELM的初始权重进行优化。适应度函数设计如下:
f i t n e s s = M S E ( t r a i n ) + M S E ( t e s t ) fitness=MSE(train)+MSE(test) fitness=MSE(train)+MSE(test)
适应度函数为,训练集和测试集(验证集)的均方误差之和,误差越小,预测越准确。

5.实验结果

本案例中数据总量为600组,其中训练集和测试集分别划分为400组和200组。输入数据维度为3维,标签数据为1维。数据划分结果如下:

%% 导入数据
load data
%训练集——400个样本
P_train=input(:,(1:400));
T_train=output((1:400));
% 测试集——200个样本
P_test=input(:,(400:600));
T_test=output((400:600));

DELM的参数设置如下:

这里DELM采用2层结构,每层的节点数分别为2,3。采用sigmoid激活函数。

%% DELM参数设置
ELMAEhiddenLayer = [2,3];%ELM—AE的隐藏层数,[n1,n2,...,n],n1代表第1个隐藏层的节点数。
ActivF = 'sig';%ELM-AE的激活函数设置
C = 5; %正则化系数

麻雀算法相关参数设置:

%% 优化算法参数设置:
%计算权值的维度
dim=0;
for i = 1:length(ELMAEhiddenLayer)dim = dim+ ELMAEhiddenLayer(i)*size(Pn_train,2);
end
popsize = 20;%种群数量
Max_iteration = 50;%最大迭代次数
lb = -1;%权值下边界
ub = 1;%权值上边界
fobj = @(X)fun(X,Pn_train,Tn_train,Pn_test,Tn_test,ELMAEhiddenLayer,ActivF,C);
[Best_pos,Best_score,SSA_cg_curve]=SSA(popsize,Max_iteration,lb,ub,dim,fobj);

最终预测结果如下:

训练集预测结果:

请添加图片描述

测试集预测结果:

请添加图片描述

请添加图片描述

DELM训练集MSE:0.04528
DELM测试集MSE:0.04953
SSA_DELM训练集MSE:0.044438
SSA_DELM测试集MSE:0.048698

从结果上来看SSA-DELM的MSE明显好于原始DELM的结果。

6.参考文献

[1]颜学龙,马润平.基于深度极限学习机的模拟电路故障诊断[J].计算机工程与科学,2019,41(11):1911-1918.

7.Matlab代码

在这里插入图片描述

这篇关于基于麻雀算法改进的DELM预测-附代码的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1071617

相关文章

Redis实现高效内存管理的示例代码

《Redis实现高效内存管理的示例代码》Redis内存管理是其核心功能之一,为了高效地利用内存,Redis采用了多种技术和策略,如优化的数据结构、内存分配策略、内存回收、数据压缩等,下面就来详细的介绍... 目录1. 内存分配策略jemalloc 的使用2. 数据压缩和编码ziplist示例代码3. 优化的

Python 基于http.server模块实现简单http服务的代码举例

《Python基于http.server模块实现简单http服务的代码举例》Pythonhttp.server模块通过继承BaseHTTPRequestHandler处理HTTP请求,使用Threa... 目录测试环境代码实现相关介绍模块简介类及相关函数简介参考链接测试环境win11专业版python

Python从Word文档中提取图片并生成PPT的操作代码

《Python从Word文档中提取图片并生成PPT的操作代码》在日常办公场景中,我们经常需要从Word文档中提取图片,并将这些图片整理到PowerPoint幻灯片中,手动完成这一任务既耗时又容易出错,... 目录引言背景与需求解决方案概述代码解析代码核心逻辑说明总结引言在日常办公场景中,我们经常需要从 W

使用Spring Cache本地缓存示例代码

《使用SpringCache本地缓存示例代码》缓存是提高应用程序性能的重要手段,通过将频繁访问的数据存储在内存中,可以减少数据库访问次数,从而加速数据读取,:本文主要介绍使用SpringCac... 目录一、Spring Cache简介核心特点:二、基础配置1. 添加依赖2. 启用缓存3. 缓存配置方案方案

MySQL的配置文件详解及实例代码

《MySQL的配置文件详解及实例代码》MySQL的配置文件是服务器运行的重要组成部分,用于设置服务器操作的各种参数,下面:本文主要介绍MySQL配置文件的相关资料,文中通过代码介绍的非常详细,需要... 目录前言一、配置文件结构1.[mysqld]2.[client]3.[mysql]4.[mysqldum

Python多线程实现大文件快速下载的代码实现

《Python多线程实现大文件快速下载的代码实现》在互联网时代,文件下载是日常操作之一,尤其是大文件,然而,网络条件不稳定或带宽有限时,下载速度会变得很慢,本文将介绍如何使用Python实现多线程下载... 目录引言一、多线程下载原理二、python实现多线程下载代码说明:三、实战案例四、注意事项五、总结引

IDEA与MyEclipse代码量统计方式

《IDEA与MyEclipse代码量统计方式》文章介绍在项目中不安装第三方工具统计代码行数的方法,分别说明MyEclipse通过正则搜索(排除空行和注释)及IDEA使用Statistic插件或调整搜索... 目录项目场景MyEclipse代码量统计IDEA代码量统计总结项目场景在项目中,有时候我们需要统计

MySQL设置密码复杂度策略的完整步骤(附代码示例)

《MySQL设置密码复杂度策略的完整步骤(附代码示例)》MySQL密码策略还可能包括密码复杂度的检查,如是否要求密码包含大写字母、小写字母、数字和特殊字符等,:本文主要介绍MySQL设置密码复杂度... 目录前言1. 使用 validate_password 插件1.1 启用 validate_passwo

MySQL实现多源复制的示例代码

《MySQL实现多源复制的示例代码》MySQL的多源复制允许一个从服务器从多个主服务器复制数据,这在需要将多个数据源汇聚到一个数据库实例时非常有用,下面就来详细的介绍一下,感兴趣的可以了解一下... 目录一、多源复制原理二、多源复制配置步骤2.1 主服务器配置Master1配置Master2配置2.2 从服

Go语言使用net/http构建一个RESTful API的示例代码

《Go语言使用net/http构建一个RESTfulAPI的示例代码》Go的标准库net/http提供了构建Web服务所需的强大功能,虽然众多第三方框架(如Gin、Echo)已经封装了很多功能,但... 目录引言一、什么是 RESTful API?二、实战目标:用户信息管理 API三、代码实现1. 用户数据