【Python高级编程】 综合练习-使用OpenCV 进行视频数据处理

本文主要是介绍【Python高级编程】 综合练习-使用OpenCV 进行视频数据处理,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

综合练习

读取一个视频文件,对其进行处理后保存为一个新的视频文件。具体的处理步骤包括调整帧大小、转换为灰度图像、垂直翻转画面以及添加高斯噪声。
下面是代码的详细实现:

import cv2
import numpy as np# 定义一个函数,用来给图像添加高斯噪声
def add_gaussian_noise(image):# 获取图像的行和列row, col = image.shapemean = 0  # 高斯噪声的平均值sigma = 15  # 高斯噪声的标准差# 生成高斯噪声gauss = np.random.normal(mean, sigma, (row, col))# 将高斯噪声添加到原图像上noisy = image + gauss# 将结果限制在0到255之间,并转换为无符号8位整型noisy_img = np.clip(noisy, 0, 255)return noisy_img.astype(np.uint8)# 输入和输出视频文件名
input_video = 'resources/outdoor.mp4'
output_video = 'resources/output.mp4'# 打开输入视频
cap = cv2.VideoCapture(input_video)# 获取视频的帧率和帧大小
fps = int(cap.get(cv2.CAP_PROP_FPS))
frame_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
frame_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))# 计算新的帧大小(540p)
new_height = 540
new_width = int((new_height / frame_height) * frame_width)# 创建视频写入对象
fourcc = cv2.VideoWriter_fourcc(*'mp4v')  # 指定视频编码格式
out = cv2.VideoWriter(output_video, fourcc, fps, (new_width, new_height), isColor=False)while True:ret, frame = cap.read()  # 逐帧读取视频if not ret:break  # 如果没有读取到帧,则退出循环# 调整帧大小frame = cv2.resize(frame, (new_width, new_height))# 转换为灰度图像frame = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)# 垂直翻转画面frame = cv2.flip(frame, 1)# 添加高斯噪声frame = add_gaussian_noise(frame)# 写入输出视频out.write(frame)# 释放资源
cap.release()
out.release()
cv2.destroyAllWindows()

代码详细解释

  1. 导入必要的库

    import cv2
    import numpy as np
    
  2. 定义添加高斯噪声的函数

    def add_gaussian_noise(image):row, col = image.shapemean = 0sigma = 15gauss = np.random.normal(mean, sigma, (row, col))noisy = image + gaussnoisy_img = np.clip(noisy, 0, 255)return noisy_img.astype(np.uint8)
    
    • 该函数接收一个灰度图像,并向其添加高斯噪声。噪声的平均值为0,标准差为15。
  3. 设置输入和输出视频文件路径

    input_video = 'resources/outdoor.mp4'
    output_video = 'resources/output.mp4'
    
  4. 打开输入视频

    cap = cv2.VideoCapture(input_video)
    
  5. 获取视频的帧率和帧大小

    fps = int(cap.get(cv2.CAP_PROP_FPS))
    frame_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
    frame_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
    
  6. 计算新的帧大小

    new_height = 540
    new_width = int((new_height / frame_height) * frame_width)
    
    • 将帧的高度调整为540像素,并按比例计算新的宽度。
  7. 创建视频写入对象

    fourcc = cv2.VideoWriter_fourcc(*'mp4v')
    out = cv2.VideoWriter(output_video, fourcc, fps, (new_width, new_height), isColor=False)
    
    • fourcc指定视频编码格式为MP4。
    • out对象用于将处理后的帧写入输出视频文件,isColor=False表示输出视频为灰度图像。
  8. 逐帧读取和处理视频

    while True:ret, frame = cap.read()if not ret:breakframe = cv2.resize(frame, (new_width, new_height))frame = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)frame = cv2.flip(frame, 1)frame = add_gaussian_noise(frame)out.write(frame)
    
    • 循环读取每一帧,直到视频结束。
    • 将帧调整为新的大小,并转换为灰度图像。
    • 对帧进行垂直翻转。
    • 添加高斯噪声。
    • 将处理后的帧写入输出视频。
  9. 释放资源

    cap.release()
    out.release()
    cv2.destroyAllWindows()
    
    • 释放视频捕捉和写入对象,关闭所有OpenCV窗口。

通过这些步骤,原始视频将被处理并保存为一个新的灰度视频,视频中的每一帧都被调整大小、翻转并添加了高斯噪声。

这篇关于【Python高级编程】 综合练习-使用OpenCV 进行视频数据处理的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1071458

相关文章

Python包管理工具pip的升级指南

《Python包管理工具pip的升级指南》本文全面探讨Python包管理工具pip的升级策略,从基础升级方法到高级技巧,涵盖不同操作系统环境下的最佳实践,我们将深入分析pip的工作原理,介绍多种升级方... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核

SpringBoot线程池配置使用示例详解

《SpringBoot线程池配置使用示例详解》SpringBoot集成@Async注解,支持线程池参数配置(核心数、队列容量、拒绝策略等)及生命周期管理,结合监控与任务装饰器,提升异步处理效率与系统... 目录一、核心特性二、添加依赖三、参数详解四、配置线程池五、应用实践代码说明拒绝策略(Rejected

C++ Log4cpp跨平台日志库的使用小结

《C++Log4cpp跨平台日志库的使用小结》Log4cpp是c++类库,本文详细介绍了C++日志库log4cpp的使用方法,及设置日志输出格式和优先级,具有一定的参考价值,感兴趣的可以了解一下... 目录一、介绍1. log4cpp的日志方式2.设置日志输出的格式3. 设置日志的输出优先级二、Window

Ubuntu如何分配​​未使用的空间

《Ubuntu如何分配​​未使用的空间》Ubuntu磁盘空间不足,实际未分配空间8.2G因LVM卷组名称格式差异(双破折号误写)导致无法扩展,确认正确卷组名后,使用lvextend和resize2fs... 目录1:原因2:操作3:报错5:解决问题:确认卷组名称​6:再次操作7:验证扩展是否成功8:问题已解

Qt使用QSqlDatabase连接MySQL实现增删改查功能

《Qt使用QSqlDatabase连接MySQL实现增删改查功能》这篇文章主要为大家详细介绍了Qt如何使用QSqlDatabase连接MySQL实现增删改查功能,文中的示例代码讲解详细,感兴趣的小伙伴... 目录一、创建数据表二、连接mysql数据库三、封装成一个完整的轻量级 ORM 风格类3.1 表结构

基于Python实现一个图片拆分工具

《基于Python实现一个图片拆分工具》这篇文章主要为大家详细介绍了如何基于Python实现一个图片拆分工具,可以根据需要的行数和列数进行拆分,感兴趣的小伙伴可以跟随小编一起学习一下... 简单介绍先自己选择输入的图片,默认是输出到项目文件夹中,可以自己选择其他的文件夹,选择需要拆分的行数和列数,可以通过

Python中反转字符串的常见方法小结

《Python中反转字符串的常见方法小结》在Python中,字符串对象没有内置的反转方法,然而,在实际开发中,我们经常会遇到需要反转字符串的场景,比如处理回文字符串、文本加密等,因此,掌握如何在Pyt... 目录python中反转字符串的方法技术背景实现步骤1. 使用切片2. 使用 reversed() 函

Python中将嵌套列表扁平化的多种实现方法

《Python中将嵌套列表扁平化的多种实现方法》在Python编程中,我们常常会遇到需要将嵌套列表(即列表中包含列表)转换为一个一维的扁平列表的需求,本文将给大家介绍了多种实现这一目标的方法,需要的朋... 目录python中将嵌套列表扁平化的方法技术背景实现步骤1. 使用嵌套列表推导式2. 使用itert

使用Docker构建Python Flask程序的详细教程

《使用Docker构建PythonFlask程序的详细教程》在当今的软件开发领域,容器化技术正变得越来越流行,而Docker无疑是其中的佼佼者,本文我们就来聊聊如何使用Docker构建一个简单的Py... 目录引言一、准备工作二、创建 Flask 应用程序三、创建 dockerfile四、构建 Docker

Python使用vllm处理多模态数据的预处理技巧

《Python使用vllm处理多模态数据的预处理技巧》本文深入探讨了在Python环境下使用vLLM处理多模态数据的预处理技巧,我们将从基础概念出发,详细讲解文本、图像、音频等多模态数据的预处理方法,... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核