代码随想录算法训练营第38天|● 理论基础 ● 509. 斐波那契数● 70. 爬楼梯 ● 746. 使用最小花费爬楼梯

本文主要是介绍代码随想录算法训练营第38天|● 理论基础 ● 509. 斐波那契数● 70. 爬楼梯 ● 746. 使用最小花费爬楼梯,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

动态规划理论基础

动态规划,英文:Dynamic Programming,简称DP,如果某一问题有很多重叠子问题,使用动态规划是最有效的。

所以动态规划中每一个状态一定是由上一个状态推导出来的,这一点就区分于贪心,贪心没有状态推导,而是从局部直接选最优的,


动态规划做题步骤

  1. 确定dp数组(dp table)以及下标的含义
  2. 确定递推公式
  3. dp数组如何初始化
  4. 确定遍历顺序
  5. 举例推导dp数组

动态规划做题debug

  1. 找问题的最好方式就是把dp数组打印出来
  2. 做动规的题目,写代码之前一定要把状态转移在dp数组的上具体情况模拟一遍,心中有数,确定最后推出的是想要的结果

斐波那契数

509. 斐波那契数 - 力扣(LeetCode)

本题为动态规划入门题,根据题目进行模拟即可

1.确定dp数组以及下标的含义

dp[i]的定义为:第i个数的斐波那契数值是dp[i]

2.确定递推公式

为什么这是一道非常简单的入门题目呢?

因为题目已经把递推公式直接给我们了:状态转移方程 dp[i] = dp[i - 1] + dp[i - 2];

3.dp数组如何初始化

题目中把如何初始化也直接给我们了,如下:

arr[0]=0;

arr[1]=1;

4.确定遍历顺序

从递归公式dp[i] = dp[i - 1] + dp[i - 2];中可以看出,dp[i]是依赖 dp[i - 1] 和 dp[i - 2],那么遍历的顺序一定是从前到后遍历的

class Solution {public int fib(int n) {if (n <= 1) {return n;}int[] arr = new int[2];arr[0] = 0;arr[1] = 1;for (int i = 2; i <= n; i++) {int sum = arr[0] + arr[1];arr[0] = arr[1];arr[1] = sum;}return arr[1];}
}

爬楼梯

70. 爬楼梯 - 力扣(LeetCode)

     1.确定dp数组(dp table)以及下标的含义

          到达第i 层有dp[i]种方法

      2.确定递推公式

           dp[i]=dp[i-1]+dp[i-2]

      3.dp数组如何初始化

           dp[1]=1;  

          dp[2]=1;

     4.确定遍历顺序

         从前向后遍历

代码:

class Solution {public int climbStairs(int n) {if(n<=2){return n;}int[] arr = new int[2];arr[0] = 1;arr[1] = 2;for (int i = 3; i <= n; i++) {int sum = arr[0] + arr[1];arr[0] = arr[1];arr[1] = sum;}return arr[1];}
}

使用最小花费爬楼梯 

746. 使用最小花费爬楼梯 - 力扣(LeetCode)

1.确定dp数组以及下标的含义

    dp[i]的定义:到达第i台阶所花费的最少体力为dp[i]。  

2.确定递推公式

      dp[i - 1] 跳到 dp[i] 需要花费 dp[i - 1] + cost[i - 1]。

     dp[i - 2] 跳到 dp[i] 需要花费 dp[i - 2] + cost[i - 2]。

    那么dp[i] = min(dp[i - 1] + cost[i - 1], dp[i - 2] + cost[i - 2]);

3.dp数组初始化

由题目可以知道你可以选择从下标为 0 或下标为 1 的台阶开始爬楼梯。所以从0或1开始不需要花钱

dp[0]=0;dp[1]=0;

4.遍历顺序

从前向后

class Solution {public int minCostClimbingStairs(int[] cost) {int[] dp = new int[cost.length + 1];dp[0] = 0;dp[1] = 0;for (int i = 2; i <= cost.length; i++) {dp[i] = Math.min(dp[i - 1] + cost[i - 1], dp[i - 2] + cost[i - 2]);}return dp[cost.length];}
}

这篇关于代码随想录算法训练营第38天|● 理论基础 ● 509. 斐波那契数● 70. 爬楼梯 ● 746. 使用最小花费爬楼梯的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1070915

相关文章

Java中流式并行操作parallelStream的原理和使用方法

《Java中流式并行操作parallelStream的原理和使用方法》本文详细介绍了Java中的并行流(parallelStream)的原理、正确使用方法以及在实际业务中的应用案例,并指出在使用并行流... 目录Java中流式并行操作parallelStream0. 问题的产生1. 什么是parallelS

Linux join命令的使用及说明

《Linuxjoin命令的使用及说明》`join`命令用于在Linux中按字段将两个文件进行连接,类似于SQL的JOIN,它需要两个文件按用于匹配的字段排序,并且第一个文件的换行符必须是LF,`jo... 目录一. 基本语法二. 数据准备三. 指定文件的连接key四.-a输出指定文件的所有行五.-o指定输出

Linux jq命令的使用解读

《Linuxjq命令的使用解读》jq是一个强大的命令行工具,用于处理JSON数据,它可以用来查看、过滤、修改、格式化JSON数据,通过使用各种选项和过滤器,可以实现复杂的JSON处理任务... 目录一. 简介二. 选项2.1.2.2-c2.3-r2.4-R三. 字段提取3.1 普通字段3.2 数组字段四.

Linux kill正在执行的后台任务 kill进程组使用详解

《Linuxkill正在执行的后台任务kill进程组使用详解》文章介绍了两个脚本的功能和区别,以及执行这些脚本时遇到的进程管理问题,通过查看进程树、使用`kill`命令和`lsof`命令,分析了子... 目录零. 用到的命令一. 待执行的脚本二. 执行含子进程的脚本,并kill2.1 进程查看2.2 遇到的

详解SpringBoot+Ehcache使用示例

《详解SpringBoot+Ehcache使用示例》本文介绍了SpringBoot中配置Ehcache、自定义get/set方式,并实际使用缓存的过程,文中通过示例代码介绍的非常详细,对大家的学习或者... 目录摘要概念内存与磁盘持久化存储:配置灵活性:编码示例引入依赖:配置ehcache.XML文件:配置

Java 虚拟线程的创建与使用深度解析

《Java虚拟线程的创建与使用深度解析》虚拟线程是Java19中以预览特性形式引入,Java21起正式发布的轻量级线程,本文给大家介绍Java虚拟线程的创建与使用,感兴趣的朋友一起看看吧... 目录一、虚拟线程简介1.1 什么是虚拟线程?1.2 为什么需要虚拟线程?二、虚拟线程与平台线程对比代码对比示例:三

从基础到高级详解Go语言中错误处理的实践指南

《从基础到高级详解Go语言中错误处理的实践指南》Go语言采用了一种独特而明确的错误处理哲学,与其他主流编程语言形成鲜明对比,本文将为大家详细介绍Go语言中错误处理详细方法,希望对大家有所帮助... 目录1 Go 错误处理哲学与核心机制1.1 错误接口设计1.2 错误与异常的区别2 错误创建与检查2.1 基础

k8s按需创建PV和使用PVC详解

《k8s按需创建PV和使用PVC详解》Kubernetes中,PV和PVC用于管理持久存储,StorageClass实现动态PV分配,PVC声明存储需求并绑定PV,通过kubectl验证状态,注意回收... 目录1.按需创建 PV(使用 StorageClass)创建 StorageClass2.创建 PV

Redis 基本数据类型和使用详解

《Redis基本数据类型和使用详解》String是Redis最基本的数据类型,一个键对应一个值,它的功能十分强大,可以存储字符串、整数、浮点数等多种数据格式,本文给大家介绍Redis基本数据类型和... 目录一、Redis 入门介绍二、Redis 的五大基本数据类型2.1 String 类型2.2 Hash

深入理解Mysql OnlineDDL的算法

《深入理解MysqlOnlineDDL的算法》本文主要介绍了讲解MysqlOnlineDDL的算法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小... 目录一、Online DDL 是什么?二、Online DDL 的三种主要算法2.1COPY(复制法)