NVIDIA发布Nemotron-4 340B 用于生成高质量的合成数据

2024-06-17 23:52

本文主要是介绍NVIDIA发布Nemotron-4 340B 用于生成高质量的合成数据,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Nemotron-4 340B 是一系列为 NVIDIA NeMo 和 NVIDIA TensorRT-LLM 优化的模型,包括最先进的指令和奖励模型,以及用于生成式 AI 训练的数据集。

e90e2ea7b8ef4fa74603084875379d5e.jpeg

英伟达今日宣布推出 Nemotron-4 340B,这是一系列开放模型,开发者可以使用它们生成用于训练大型语言模型(LLM)的合成数据,以应用于医疗、金融、制造、零售及其他各行各业的商业应用。

高质量的训练数据在定制 LLM 的性能、准确性和响应质量中起着至关重要的作用,但健全的数据集通常价格高昂且难以获取。

通过一种独特的宽松开放模型许可,Nemotron-4 340B 为开发者提供了一种免费的、可扩展的方式来生成合成数据,从而帮助构建强大的 LLM。

Nemotron-4 340B 系列包括基础模型、指令模型和奖励模型,这些模型构成了一个管道,用于生成训练和改进 LLM 所需的合成数据。这些模型经过优化,可与 NVIDIA NeMo 一起工作,NVIDIA NeMo 是一个用于端到端模型训练的开源框架,包括数据策划、定制和评估。它们也经过优化,可与开源的 NVIDIA TensorRT-LLM 库进行推理。

Nemotron-4 340B 现已可以从 Hugging Face 下载。开发者很快可以在 ai.nvidia.com 访问这些模型,届时它们将被打包为 NVIDIA NIM 微服务,具有标准应用编程接口,可以部署到任何地方。

使用 Nemotron 生成合成数据 LLM 可以帮助开发者在无法获取大量、多样的标注数据集的情况下生成合成训练数据。

Nemotron-4 340B 指令模型创建的多样化合成数据模拟了真实世界数据的特征,有助于提高数据质量,从而提升定制 LLM 在各个领域的性能和鲁棒性。

接着,为了提升 AI 生成数据的质量,开发者可以使用 Nemotron-4 340B 奖励模型来筛选高质量的响应。Nemotron-4 340B 奖励模型根据五个属性对响应进行评分:有用性、正确性、一致性、复杂性和详细性。它目前在 Hugging Face 的 RewardBench 排行榜上名列第一,该排行榜由 AI2 创建,用于评估奖励模型的能力、安全性和潜在问题。

06d2bb6cfeba9b98cec23b54bdf50515.jpeg

研究人员还可以通过使用其专有数据并结合包括的 HelpSteer2 数据集,定制 Nemotron-4 340B 基础模型来创建自己的指令或奖励模型。

使用 NeMo 微调和使用 TensorRT-LLM 优化推理 利用开源的 NVIDIA NeMo 和 NVIDIA TensorRT-LLM,开发者可以优化其指令和奖励模型的效率,以生成合成数据并对响应进行评分。

所有 Nemotron-4 340B 模型都经过 TensorRT-LLM 优化,利用张量并行技术,这是一种将单个权重矩阵拆分到多个 GPU 和服务器上的模型并行方法,从而实现大规模高效推理。

Nemotron-4 340B 基础模型在 9 万亿个标记上训练,可以使用 NeMo 框架进行定制,以适应特定的使用场景或领域。这一微调过程受益于广泛的预训练数据,并为特定下游任务生成更准确的输出。

通过 NeMo 框架提供多种定制方法,包括监督微调和参数高效微调方法,如低秩适应(LoRA)。

为了提升模型质量,开发者可以使用 NeMo Aligner 和由 Nemotron-4 340B 奖励模型标注的数据集对其模型进行对齐。对齐是训练 LLM 的关键步骤,通过使用人类反馈强化学习(RLHF)等算法微调模型行为,以确保其输出安全、准确、上下文适当并符合预期目标。

需要企业级支持和生产环境安全性的企业可以通过云原生的 NVIDIA AI Enterprise 软件平台访问 NeMo 和 TensorRT-LLM,该平台为生成式 AI 基础模型提供加速和高效的运行时。

评估模型安全性并开始使用 Nemotron-4 340B 指令模型经过了广泛的安全评估,包括对抗性测试,并在各种风险指标上表现良好。用户仍应对模型的输出进行仔细评估,以确保生成的合成数据适合、安全且准确地用于他们的使用场景。

高性价GPU活动:https://www.ucloud.cn/site/active/gpu.html?ytag=gpu_wenzhang_tongyong_shemei

这篇关于NVIDIA发布Nemotron-4 340B 用于生成高质量的合成数据的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1070739

相关文章

SpringBoot多环境配置数据读取方式

《SpringBoot多环境配置数据读取方式》SpringBoot通过环境隔离机制,支持properties/yaml/yml多格式配置,结合@Value、Environment和@Configura... 目录一、多环境配置的核心思路二、3种配置文件格式详解2.1 properties格式(传统格式)1.

解决pandas无法读取csv文件数据的问题

《解决pandas无法读取csv文件数据的问题》本文讲述作者用Pandas读取CSV文件时因参数设置不当导致数据错位,通过调整delimiter和on_bad_lines参数最终解决问题,并强调正确参... 目录一、前言二、问题复现1. 问题2. 通过 on_bad_lines=‘warn’ 跳过异常数据3

C#监听txt文档获取新数据方式

《C#监听txt文档获取新数据方式》文章介绍通过监听txt文件获取最新数据,并实现开机自启动、禁用窗口关闭按钮、阻止Ctrl+C中断及防止程序退出等功能,代码整合于主函数中,供参考学习... 目录前言一、监听txt文档增加数据二、其他功能1. 设置开机自启动2. 禁止控制台窗口关闭按钮3. 阻止Ctrl +

java如何实现高并发场景下三级缓存的数据一致性

《java如何实现高并发场景下三级缓存的数据一致性》这篇文章主要为大家详细介绍了java如何实现高并发场景下三级缓存的数据一致性,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 下面代码是一个使用Java和Redisson实现的三级缓存服务,主要功能包括:1.缓存结构:本地缓存:使

在MySQL中实现冷热数据分离的方法及使用场景底层原理解析

《在MySQL中实现冷热数据分离的方法及使用场景底层原理解析》MySQL冷热数据分离通过分表/分区策略、数据归档和索引优化,将频繁访问的热数据与冷数据分开存储,提升查询效率并降低存储成本,适用于高并发... 目录实现冷热数据分离1. 分表策略2. 使用分区表3. 数据归档与迁移在mysql中实现冷热数据分

C#解析JSON数据全攻略指南

《C#解析JSON数据全攻略指南》这篇文章主要为大家详细介绍了使用C#解析JSON数据全攻略指南,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、为什么jsON是C#开发必修课?二、四步搞定网络JSON数据1. 获取数据 - HttpClient最佳实践2. 动态解析 - 快速

python生成随机唯一id的几种实现方法

《python生成随机唯一id的几种实现方法》在Python中生成随机唯一ID有多种方法,根据不同的需求场景可以选择最适合的方案,文中通过示例代码介绍的非常详细,需要的朋友们下面随着小编来一起学习学习... 目录方法 1:使用 UUID 模块(推荐)方法 2:使用 Secrets 模块(安全敏感场景)方法

MyBatis-Plus通用中等、大量数据分批查询和处理方法

《MyBatis-Plus通用中等、大量数据分批查询和处理方法》文章介绍MyBatis-Plus分页查询处理,通过函数式接口与Lambda表达式实现通用逻辑,方法抽象但功能强大,建议扩展分批处理及流式... 目录函数式接口获取分页数据接口数据处理接口通用逻辑工具类使用方法简单查询自定义查询方法总结函数式接口

SQL中如何添加数据(常见方法及示例)

《SQL中如何添加数据(常见方法及示例)》SQL全称为StructuredQueryLanguage,是一种用于管理关系数据库的标准编程语言,下面给大家介绍SQL中如何添加数据,感兴趣的朋友一起看看吧... 目录在mysql中,有多种方法可以添加数据。以下是一些常见的方法及其示例。1. 使用INSERT I

Python使用vllm处理多模态数据的预处理技巧

《Python使用vllm处理多模态数据的预处理技巧》本文深入探讨了在Python环境下使用vLLM处理多模态数据的预处理技巧,我们将从基础概念出发,详细讲解文本、图像、音频等多模态数据的预处理方法,... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核