深度学习训练——batch_size参数设置过大反而训练更耗时的原因分析

本文主要是介绍深度学习训练——batch_size参数设置过大反而训练更耗时的原因分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

💪 专业从事且热爱图像处理,图像处理专栏更新如下👇:
📝《图像去噪》
📝《超分辨率重建》
📝《语义分割》
📝《风格迁移》
📝《目标检测》
📝《暗光增强》
📝《模型优化》
📝《模型实战部署》


在这里插入图片描述

在深度学习训练过程中,batch_size 对训练时间的影响并不是线性的,有时增大 batch_size 反而会导致训练时间变长。

目录

  • 一、例子
    • 1.1 较大batch_size
    • 1.2 较小batch_size
    • 1.3 对比分析
  • 二、原因
    • 2.1 硬件限制
    • 2.2 优化器的影响
    • 2.3 数据传输瓶颈
    • 2.4 模型的细节和配置
  • 三、设置最合适batch_size值
  • 四、总结

一、例子

1.1 较大batch_size

下面是batch_size设置较大为45时的耗时情况统计:

在这里插入图片描述

下面是训练过程中显存和GPU的利用情况:

在这里插入图片描述

下面是耗时情况:

在这里插入图片描述

1.2 较小batch_size

下面batch_size设置为20:

在这里插入图片描述

下面是训练过程中显存和GPU的利用情况:

在这里插入图片描述

下面是训练耗时情况统计:

在这里插入图片描述

1.3 对比分析

通过上面较大和较小的batch_size数值对比分析可以看出,较大的batch_size值不一定会加快训练速度,具体原因见下。

二、原因

2.1 硬件限制

内存限制: 当 batch_size 增大时,单次前向和反向传播所需的内存也增加。如果你的硬件(尤其是 GPU)内存不足,可能会导致频繁的数据交换,增加训练时间。

计算瓶颈: 大 batch_size 会使得计算量增加,尤其是当计算资源无法充分利用时,这种增加会变得显著。

2.2 优化器的影响

学习率与batch_size关系: 一些优化器在大 batch_size 下可能需要更高的学习率才能维持同样的收敛速度。如果学习率没有相应调整,可能导致训练速度变慢,甚至影响收敛效果。

梯度更新频率: 较小的 batch_size 意味着更频繁的梯度更新,这可能在某些情况下加快收敛速度。

2.3 数据传输瓶颈

数据读取与传输: 增大 batch_size 会导致每次训练迭代需要传输更多数据,这会增加数据读取和传输的时间。如果数据存储在磁盘或通过网络传输,这种影响会更加明显。

2.4 模型的细节和配置

模型架构复杂度: 对于某些复杂模型,增大 batch_size 可能导致训练时间成倍增加,因为每次迭代的计算时间大幅增加。

框架实现细节: 一些深度学习框架对大 batch_size 的优化不够充分,可能导致效率下降。

三、设置最合适batch_size值

监控内存使用情况: 观察在不同 batch_size 下的内存使用情况,确认是否存在内存瓶颈。

调整学习率: 尝试在大 batch_size 下调高学习率,观察是否有改善。

数据加载优化: 确保数据加载和传输的效率,避免因 I/O 瓶颈导致的训练时间增加。

实验记录: 详细记录不同 batch_size 下的训练过程,分析各个阶段的时间消耗,找到具体的瓶颈。

四、总结

以上就是深度学习训练中batch_size参数设置过大反而训练更耗时的原因分析,学者想要快速训练出模型,得根据自己具体的模型结构复杂程度,电脑性能等设置合适的batch_size参数。

感谢您阅读到最后!😊总结不易,多多支持呀🌹 点赞👍收藏⭐评论✍️,您的三连是我持续更新的动力💖

关注公众号「视觉研坊」,获取干货教程、实战案例、技术解答、行业资讯!

这篇关于深度学习训练——batch_size参数设置过大反而训练更耗时的原因分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1070728

相关文章

Java中Redisson 的原理深度解析

《Java中Redisson的原理深度解析》Redisson是一个高性能的Redis客户端,它通过将Redis数据结构映射为Java对象和分布式对象,实现了在Java应用中方便地使用Redis,本文... 目录前言一、核心设计理念二、核心架构与通信层1. 基于 Netty 的异步非阻塞通信2. 编解码器三、

Java HashMap的底层实现原理深度解析

《JavaHashMap的底层实现原理深度解析》HashMap基于数组+链表+红黑树结构,通过哈希算法和扩容机制优化性能,负载因子与树化阈值平衡效率,是Java开发必备的高效数据结构,本文给大家介绍... 目录一、概述:HashMap的宏观结构二、核心数据结构解析1. 数组(桶数组)2. 链表节点(Node

Java 虚拟线程的创建与使用深度解析

《Java虚拟线程的创建与使用深度解析》虚拟线程是Java19中以预览特性形式引入,Java21起正式发布的轻量级线程,本文给大家介绍Java虚拟线程的创建与使用,感兴趣的朋友一起看看吧... 目录一、虚拟线程简介1.1 什么是虚拟线程?1.2 为什么需要虚拟线程?二、虚拟线程与平台线程对比代码对比示例:三

Nginx分布式部署流程分析

《Nginx分布式部署流程分析》文章介绍Nginx在分布式部署中的反向代理和负载均衡作用,用于分发请求、减轻服务器压力及解决session共享问题,涵盖配置方法、策略及Java项目应用,并提及分布式事... 目录分布式部署NginxJava中的代理代理分为正向代理和反向代理正向代理反向代理Nginx应用场景

Python函数作用域与闭包举例深度解析

《Python函数作用域与闭包举例深度解析》Python函数的作用域规则和闭包是编程中的关键概念,它们决定了变量的访问和生命周期,:本文主要介绍Python函数作用域与闭包的相关资料,文中通过代码... 目录1. 基础作用域访问示例1:访问全局变量示例2:访问外层函数变量2. 闭包基础示例3:简单闭包示例4

Redis中的有序集合zset从使用到原理分析

《Redis中的有序集合zset从使用到原理分析》Redis有序集合(zset)是字符串与分值的有序映射,通过跳跃表和哈希表结合实现高效有序性管理,适用于排行榜、延迟队列等场景,其时间复杂度低,内存占... 目录开篇:排行榜背后的秘密一、zset的基本使用1.1 常用命令1.2 Java客户端示例二、zse

Redis中的AOF原理及分析

《Redis中的AOF原理及分析》Redis的AOF通过记录所有写操作命令实现持久化,支持always/everysec/no三种同步策略,重写机制优化文件体积,与RDB结合可平衡数据安全与恢复效率... 目录开篇:从日记本到AOF一、AOF的基本执行流程1. 命令执行与记录2. AOF重写机制二、AOF的

MyBatis Plus大数据量查询慢原因分析及解决

《MyBatisPlus大数据量查询慢原因分析及解决》大数据量查询慢常因全表扫描、分页不当、索引缺失、内存占用高及ORM开销,优化措施包括分页查询、流式读取、SQL优化、批处理、多数据源、结果集二次... 目录大数据量查询慢的常见原因优化方案高级方案配置调优监控与诊断总结大数据量查询慢的常见原因MyBAT

分析 Java Stream 的 peek使用实践与副作用处理方案

《分析JavaStream的peek使用实践与副作用处理方案》StreamAPI的peek操作是中间操作,用于观察元素但不终止流,其副作用风险包括线程安全、顺序混乱及性能问题,合理使用场景有限... 目录一、peek 操作的本质:有状态的中间操作二、副作用的定义与风险场景1. 并行流下的线程安全问题2. 顺

MyBatis/MyBatis-Plus同事务循环调用存储过程获取主键重复问题分析及解决

《MyBatis/MyBatis-Plus同事务循环调用存储过程获取主键重复问题分析及解决》MyBatis默认开启一级缓存,同一事务中循环调用查询方法时会重复使用缓存数据,导致获取的序列主键值均为1,... 目录问题原因解决办法如果是存储过程总结问题myBATis有如下代码获取序列作为主键IdMappe