rnn定义(rnn批次,核心思想理解)循环神经网络(递归)

2024-06-17 23:28

本文主要是介绍rnn定义(rnn批次,核心思想理解)循环神经网络(递归),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

rnn源码阅读方法:

点击去往后翻 注释都放在最后

也可以直接粘贴出来gpt解释

一rnn核心思想:

1.定义rnn模型

2.定义输入层

3.定义隐藏层(通过设置参数调整隐藏层层数) 初始隐藏状态需要与输入张量的大小相匹配,以便RNN能够正确地处理数据。

4定义输出层

代码演示:

def dm_rnn_for_base():# 创建一个RNN模型'''input_size:这是输入数据的维度。对于nn.RNN,它是一个标量,表示每个时间步的输入数据的维度。在这个例子中,input_size被设置为5。
hidden_size:这是RNN中隐藏层的大小。这个参数决定了网络能够学习的状态空间的大小。在这个例子中,hidden_size被设置为6。
num_layers:这是RNN中层的数量。每个层都包含一个或多个隐藏单元。在这个例子中,num_layers被设置为1,意味着只有一个隐藏层。:return:'''rnn = nn.RNN(5, 6, 1)# 创建一个随机输入张量,形状为(batch_size, sequence_length, input_size)# 在这个例子中,batch_size为1,sequence_length为3,input_size为5input = torch.randn(1, 3, 5)# 创建一个随机初始隐藏状态张量,形状为(num_layers, batch_size, hidden_size)# 在这个例子中,num_layers为1,batch_size为1,hidden_size为6h0 = torch.randn(1, 3, 6)# 使用RNN模型进行前向传播,输入为input,初始隐藏状态为h0# 输出为一个张量,包含所有时间步的输出,形状为(sequence_length, batch_size, hidden_size)# 隐藏状态张量hn包含了最后一个时间步的隐藏状态,形状为(num_layers, batch_size, hidden_size)output, hn = rnn(input, h0)# 打印输出张量和隐藏状态张量的形状和内容print('output', output.shape, output)print('hn', hn.shape, hn)# 打印RNN模型的详细信息print('rnn模型打印', rnn)

output, hn = rnn(input, h0)

返回值解释: 区别

output保存了每一行的输出 hn只保留了最后一个隐藏层输出

batch 和batch_size区别:

epoch=100

batch_size=5

那么batch=25(100/25)

batch_size=5

不用batch和batch_size区别:

逐个训练会占用更多的 时间

分批次会并行计算然后合并 更高效

注意事项:

nn.rnn和rnn 前向传播区别:

在PyTorch中,nn.RNN是一个类,它定义了RNN的计算图和前向传播操作。当你创建一个nn.RNN的实例时,你实际上并没有执行前向传播,只是定义了前向传播的计算图。前向传播是在你调用nn.RNN实例的forward方法时执行的。

在PyTorch中,所有的神经网络模块(如nn.RNN)都有一个forward方法,这个方法定义了网络的计算过程。当你使用rnn(input, h0)这样的形式调用nn.RNN实例的forward方法时,你才真正执行了前向传播。

因此,当你看到代码中出现rnn = nn.RNN(5, 6, 1)时,这行代码只是创建了一个nn.RNN的实例,并没有执行前向传播。真正执行前向传播的是output, hn = rnn(input, h0)这行代码。

两次执行前向传播的区别在于:

  1. 第一次执行(创建nn.RNN实例):这行代码定义了RNN的前向传播计算图,但并没有执行计算。
  2. 第二次执行(调用nn.RNN实例的forward方法):这行代码执行了前向传播,计算了输出和隐藏状态。

batch_first=true辨析

batch_first开启后层次更明了 rnn每一层保存一个单词第n个 多个层次后才结束

batch_first rnn每一层一个的单词的从开始到结束

默认值(batch_first=False):如果batch_first设置为False,则输入张量(torch.randn(1, 3, 5))的形状应该为(sequence_length, batch_size, input_size)。在这种情况下,RNN的forward方法会按时间步顺序处理序列数据,即首先处理序列的第一个元素,然后是第二个元素,依此类推。todo 一个单词的中的一个字母叫元素  love  word 处理顺序: l w   o o  v r
设置为True(batch_first=True):如果batch_first设置为True,则输入张量的形状应该为(batch_size, sequence_length, input_size)。
在这种情况下,RNN的forward方法会按批次顺序处理序列数据,即首先处理序列的第一个批次,然后是第二个批次,依此类推。todo 一个批次 所有单词处理完    love word 处理顺序  love word

当batch_first设置为True时,输入张量的形状应该是(batch_size, sequence_length, input_size);当batch_first设置为False时,输入张量的形状应该是(sequence_length, batch_size, input_size)。

所以true后要调整参数

RNN中批次处理问题:

无论是否分批次处理,RNN中的数据都是按照时间步顺序逐个处理的。

这篇关于rnn定义(rnn批次,核心思想理解)循环神经网络(递归)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1070701

相关文章

Spring 中的循环引用问题解决方法

《Spring中的循环引用问题解决方法》:本文主要介绍Spring中的循环引用问题解决方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录什么是循环引用?循环依赖三级缓存解决循环依赖二级缓存三级缓存本章来聊聊Spring 中的循环引用问题该如何解决。这里聊

C 语言中enum枚举的定义和使用小结

《C语言中enum枚举的定义和使用小结》在C语言里,enum(枚举)是一种用户自定义的数据类型,它能够让你创建一组具名的整数常量,下面我会从定义、使用、特性等方面详细介绍enum,感兴趣的朋友一起看... 目录1、引言2、基本定义3、定义枚举变量4、自定义枚举常量的值5、枚举与switch语句结合使用6、枚

C# foreach 循环中获取索引的实现方式

《C#foreach循环中获取索引的实现方式》:本文主要介绍C#foreach循环中获取索引的实现方式,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录一、手动维护索引变量二、LINQ Select + 元组解构三、扩展方法封装索引四、使用 for 循环替代

Spring Boot循环依赖原理、解决方案与最佳实践(全解析)

《SpringBoot循环依赖原理、解决方案与最佳实践(全解析)》循环依赖指两个或多个Bean相互直接或间接引用,形成闭环依赖关系,:本文主要介绍SpringBoot循环依赖原理、解决方案与最... 目录一、循环依赖的本质与危害1.1 什么是循环依赖?1.2 核心危害二、Spring的三级缓存机制2.1 三

深入理解Apache Kafka(分布式流处理平台)

《深入理解ApacheKafka(分布式流处理平台)》ApacheKafka作为现代分布式系统中的核心中间件,为构建高吞吐量、低延迟的数据管道提供了强大支持,本文将深入探讨Kafka的核心概念、架构... 目录引言一、Apache Kafka概述1.1 什么是Kafka?1.2 Kafka的核心概念二、Ka

C语言函数递归实际应用举例详解

《C语言函数递归实际应用举例详解》程序调用自身的编程技巧称为递归,递归做为一种算法在程序设计语言中广泛应用,:本文主要介绍C语言函数递归实际应用举例的相关资料,文中通过代码介绍的非常详细,需要的朋... 目录前言一、递归的概念与思想二、递归的限制条件 三、递归的实际应用举例(一)求 n 的阶乘(二)顺序打印

springboot循环依赖问题案例代码及解决办法

《springboot循环依赖问题案例代码及解决办法》在SpringBoot中,如果两个或多个Bean之间存在循环依赖(即BeanA依赖BeanB,而BeanB又依赖BeanA),会导致Spring的... 目录1. 什么是循环依赖?2. 循环依赖的场景案例3. 解决循环依赖的常见方法方法 1:使用 @La

Python循环缓冲区的应用详解

《Python循环缓冲区的应用详解》循环缓冲区是一个线性缓冲区,逻辑上被视为一个循环的结构,本文主要为大家介绍了Python中循环缓冲区的相关应用,有兴趣的小伙伴可以了解一下... 目录什么是循环缓冲区循环缓冲区的结构python中的循环缓冲区实现运行循环缓冲区循环缓冲区的优势应用案例Python中的实现库

Jackson库进行JSON 序列化时遇到了无限递归(Infinite Recursion)的问题及解决方案

《Jackson库进行JSON序列化时遇到了无限递归(InfiniteRecursion)的问题及解决方案》使用Jackson库进行JSON序列化时遇到了无限递归(InfiniteRecursi... 目录解决方案‌1. 使用 @jsonIgnore 忽略一个方向的引用2. 使用 @JsonManagedR

Java嵌套for循环优化方案分享

《Java嵌套for循环优化方案分享》介绍了Java中嵌套for循环的优化方法,包括减少循环次数、合并循环、使用更高效的数据结构、并行处理、预处理和缓存、算法优化、尽量减少对象创建以及本地变量优化,通... 目录Java 嵌套 for 循环优化方案1. 减少循环次数2. 合并循环3. 使用更高效的数据结构4