C++类对象模型、类对象的存储方式、this指针、this指针的引出、this指针的特性、C语言和C++实现Stack的对比等的介绍。

本文主要是介绍C++类对象模型、类对象的存储方式、this指针、this指针的引出、this指针的特性、C语言和C++实现Stack的对比等的介绍。,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 前言
  • 一、C++类对象模型
    • 1. 类对象的存储方式
    • 2. 结构体内存对齐规则
  • 二、this指针
    • 1. this指针的引出
    • 2. this指针的特性
    • 3. C语言和C++实现Stack的对比
  • 总结


前言

C++类对象模型、类对象的存储方式、this指针、this指针的引出、this指针的特性、C语言和C++实现Stack的对比等的介绍。


一、C++类对象模型

1. 类对象的存储方式

只保存成员变量,成员函数存放在公共的代码段

#include <iostream>
using namespace std;// 类中包含成员变量和成员函数
class A1
{
public:void f1() {};
private:char _str;int _a;
};// 类中只含有成员函数
class A2
{
public:void f2() {};
};// 空类
class A3
{};int main()
{cout << sizeof(A1) << endl;cout << sizeof(A2) << endl;cout << sizeof(A3) << endl;return 0;
}

在这里插入图片描述

结论:一个类的大小,实际就是该类中”成员变量”之和,当然要注意内存对齐
注意空类的大小,空类比较特殊,编译器给了空类一个字节来唯一标识这个类的对象。

2. 结构体内存对齐规则

  1. 第一个成员在与结构体变量的偏移量为0的地址处。
  2. 其他成员变量要对齐到某个数字(对齐数)的整数倍的地址处。
    对齐数 = 编译器默认的一个对齐数 与 该成员大小的较小值
    - VS 中默认的值为 8。
    - 只有 VS 编译器有默认对齐数,其他编译器上的对齐数就是成员大小。
  3. 结构体总大小为最大对齐数(每个成员变量都有一个对齐数)的整数倍
  4. 如果嵌套了结构体的情况,嵌套的结构体对齐到自己的最大对齐数的整数倍处,结构体的整体大小就是所有最大对齐数(含嵌套结构体的对齐数)的整数倍

二、this指针

1. this指针的引出

#include <iostream>
using namespace std;class Date
{
public:void Init(int year, int month, int day){_year = year;_month = month;_day = day;}void Print(){cout << _year << " " << _month << " " << _day << " " << endl;}private:int _year;int _month;int _day;
};int main()
{Date d1, d2;d1.Init(2024, 6, 17);d2.Init(2022, 11, 11);d1.Print(); // 2024 6 17d2.Print(); // 2022 11 11return 0;
}
  • 有上述类对象的存储方式可知,成员函数是在公共区域中的,所以d1 和 d2 调用的是同一个函数。
  • 但是打印出的结果是不同的,编译器是如何区分的呢?

C++中通过引入this指针解决该问题,即:C++编译器给每个“非静态的成员函数“增加了一个隐藏的指针参数,让该指针指向当前对象(函数运行时调用该函数的对象),在函数体中所有“成员变量”的操作,都是通过该指针去访问。只不过所有的操作对用户是透明的,即用户不需要来传递,编译器自动完成。

  • 简单来说就是,每一个成员函数在调用时,编译器自动传入一个隐藏的this指针,该指针指向调用该函数的对象。函数中对成员变量的操作都是通过该this指针访问的。

在这里插入图片描述

  • 调用函数的大致过程如上:
  • 但是this是一个关键字,是编译器自动完成传参的,不能在形参和实参中显示传递。但是在函数内部可以直接使用。如下:
    在这里插入图片描述

2. this指针的特性

  1. this指针的类型类类型 const*,即成员函数中,不能给this指针赋值。
  2. 只能在“成员函数”的内部使用
  3. this指针本质上是“成员函数”的形参,当对象调用成员函数时,将对象地址作为实参传递给
    this形参。所以对象中不存储this指针。
  4. this指针是“成员函数”第一个隐含的指针形参,一般情况由编译器通过ecx寄存器自动传
    递,不需要用户传递。

this 指针存放在哪里?

  • this指针本质上是函数的形参,所以this指针存放在栈区中。

this 指针可以为空吗?

  • this 指针可以为空。如下:
#include <iostream>
using namespace std;class A
{
public:void Print(){cout << "Print()" << endl;}
private:int _a;
};int main()
{A* p = nullptr;p->Print();return 0;
}
  • 如上述代码,p为空指针,在调用类A的成员函数时,传入了p,即此时隐藏的this为空指针。
  • 上述代码能成功运行并打印的原因:
    类对象的成员函数是存放在公共区域中的,不存在类内部。并且,成员函数内部并没有访问成员变量,因此没有对this解引用。所以,程序可以成功运行。

#include <iostream>
using namespace std;class A
{
public:void Print(){cout << _a << endl;}
private:int _a;
};int main()
{A* p = nullptr;p->Print();return 0;
}

在这里插入图片描述

  • 上述代码在调用函数时传入空指针,但成员函数存放在公共区域中,this空指针无影响。
  • 但是 函数内部访问了成员变量,即对this指针进行解引用,所以会报错(空指针解引用,运行时错误)

3. C语言和C++实现Stack的对比

C语言实现Stack

#include <stdio.h>
#include <assert.h>
#include <stdlib.h>
#include <stdbool.h>#define DEFAULT_CAPACITY 4
typedef int STDataType;
typedef struct Stack
{STDataType* a;int size;int capacity;
}Stack;void StackInit(Stack* ps)
{assert(ps);ps->a = (STDataType*)malloc(sizeof(STDataType) * DEFAULT_CAPACITY);if (ps->a == NULL){perror("StackInit malloc");return;}ps->size = 0;ps->capacity = DEFAULT_CAPACITY;
}void StackDestroy(Stack* ps)
{assert(ps);free(ps->a);ps->a = NULL;ps->size = 0;ps->capacity = 0;
}void StackCheckCapacity(Stack* ps)
{if (ps->size == ps->capacity){STDataType* tmp = (STDataType*)realloc(ps->a, sizeof(STDataType) * (ps->capacity) * 2);if (tmp == NULL){perror("StackCheckCapacity realloc");return;}ps->a = tmp;tmp = NULL;ps->capacity *= 2;}
}void StackPush(Stack* ps, STDataType x)
{assert(ps);StackCheckCapacity(ps);ps->a[ps->size] = x;ps->size++;
}bool StackEmpty(Stack* ps)
{assert(ps);return (ps->size == 0);}void StackPop(Stack* ps)
{assert(ps && ps->size);ps->size--;
}STDataType StackTop(Stack* ps)
{assert(ps && ps->size);return (ps->a[ps->size - 1]);
}int StackSize(Stack* ps)
{assert(ps);return ps->size;
}int main()
{Stack st;StackInit(&st);StackPush(&st, 1);StackPush(&st, 2);StackPush(&st, 3);StackPush(&st, 4);StackPush(&st, 5);printf("%d\n", StackSize(&st));while (!StackEmpty(&st)){printf("%d ", StackTop(&st));StackPop(&st);}printf("\n");printf("%d\n", StackSize(&st));StackDestroy(&st);return 0;
}

在这里插入图片描述

可以看到,在用C语言实现时,Stack相关操作函数有以下共性:

  • 每个函数的第一个参数都是Stack*
  • 函数中必须要对第一个参数检测,因为该参数可能会为NULL
  • 函数中都是通过Stack*参数操作栈的
  • 调用时必须传递Stack结构体变量的地址

结构体中只能定义存放数据的结构,操作数据的方法不能放在结构体中,即数据和操作数据
的方式是分离开的
,而且实现上相当复杂一点,涉及到大量指针操作,稍不注意可能就会出
错。


C++实现Stack

#include <iostream>
#include <assert.h>
using namespace std;typedef int STDataType;
typedef struct Stack
{
public:// 初始化栈void Init(int capacity){_a = (STDataType*)malloc(sizeof(STDataType) * capacity);if (_a == nullptr){perror("Init malloc");return;}_capacity = capacity;_size = 0;}// 销毁栈void Destroy(){free(_a);_a = nullptr;_size = 0;_capacity = 0;}// 插入数据void Push(STDataType x){if (_size == _capacity){STDataType* tmp = (STDataType*)realloc(_a, sizeof(STDataType) * 2 * _capacity);if (tmp == nullptr){perror("Push realloc");return;}_a = tmp;_capacity *= 2;}_a[_size] = x;_size++;}// 判断是否为空bool Empty(){return (_size == 0);}// 出栈顶元素void Pop(){assert(!Empty());_size--;}// 获得栈顶元素STDataType Top(){return _a[_size - 1];}// 获得栈的大小int Size(){return _size;}private:STDataType* _a;int _size;int _capacity;
}Stack;int main()
{Stack st;st.Init(4);st.Push(1);st.Push(2);st.Push(3);st.Push(4);st.Push(5);cout << st.Top() << endl;cout << st.Size() << endl;while (!st.Empty()){cout << st.Top() << " ";st.Pop();}cout << endl;cout << st.Size() << endl;st.Pop();st.Destroy();return 0;
}

在这里插入图片描述

C++中通过类可以将数据 以及 操作数据的方法进行完美结合,通过访问权限可以控制那些方法在
类外可以被调用,即封装
,在使用时就像使用自己的成员一样,更符合人类对一件事物的认知。
而且每个方法不需要传递Stack*的参数了,编译器编译之后该参数会自动还原,即C++中 Stack *
参数是编译器维护的,C语言中需用用户自己维护


总结

C++类对象模型、类对象的存储方式、this指针、this指针的引出、this指针的特性、C语言和C++实现Stack的对比等的介绍。

这篇关于C++类对象模型、类对象的存储方式、this指针、this指针的引出、this指针的特性、C语言和C++实现Stack的对比等的介绍。的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1070271

相关文章

Flutter实现文字镂空效果的详细步骤

《Flutter实现文字镂空效果的详细步骤》:本文主要介绍如何使用Flutter实现文字镂空效果,包括创建基础应用结构、实现自定义绘制器、构建UI界面以及实现颜色选择按钮等步骤,并详细解析了混合模... 目录引言实现原理开始实现步骤1:创建基础应用结构步骤2:创建主屏幕步骤3:实现自定义绘制器步骤4:构建U

SpringBoot中四种AOP实战应用场景及代码实现

《SpringBoot中四种AOP实战应用场景及代码实现》面向切面编程(AOP)是Spring框架的核心功能之一,它通过预编译和运行期动态代理实现程序功能的统一维护,在SpringBoot应用中,AO... 目录引言场景一:日志记录与性能监控业务需求实现方案使用示例扩展:MDC实现请求跟踪场景二:权限控制与

Android实现定时任务的几种方式汇总(附源码)

《Android实现定时任务的几种方式汇总(附源码)》在Android应用中,定时任务(ScheduledTask)的需求几乎无处不在:从定时刷新数据、定时备份、定时推送通知,到夜间静默下载、循环执行... 目录一、项目介绍1. 背景与意义二、相关基础知识与系统约束三、方案一:Handler.postDel

SQLyog中DELIMITER执行存储过程时出现前置缩进问题的解决方法

《SQLyog中DELIMITER执行存储过程时出现前置缩进问题的解决方法》在SQLyog中执行存储过程时出现的前置缩进问题,实际上反映了SQLyog对SQL语句解析的一个特殊行为,本文给大家介绍了详... 目录问题根源正确写法示例永久解决方案为什么命令行不受影响?最佳实践建议问题根源SQLyog的语句分

gradle第三方Jar包依赖统一管理方式

《gradle第三方Jar包依赖统一管理方式》:本文主要介绍gradle第三方Jar包依赖统一管理方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录背景实现1.顶层模块build.gradle添加依赖管理插件2.顶层模块build.gradle添加所有管理依赖包

使用Python实现IP地址和端口状态检测与监控

《使用Python实现IP地址和端口状态检测与监控》在网络运维和服务器管理中,IP地址和端口的可用性监控是保障业务连续性的基础需求,本文将带你用Python从零打造一个高可用IP监控系统,感兴趣的小伙... 目录概述:为什么需要IP监控系统使用步骤说明1. 环境准备2. 系统部署3. 核心功能配置系统效果展

Python实现微信自动锁定工具

《Python实现微信自动锁定工具》在数字化办公时代,微信已成为职场沟通的重要工具,但临时离开时忘记锁屏可能导致敏感信息泄露,下面我们就来看看如何使用Python打造一个微信自动锁定工具吧... 目录引言:当微信隐私遇到自动化守护效果展示核心功能全景图技术亮点深度解析1. 无操作检测引擎2. 微信路径智能获

C#如何调用C++库

《C#如何调用C++库》:本文主要介绍C#如何调用C++库方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录方法一:使用P/Invoke1. 导出C++函数2. 定义P/Invoke签名3. 调用C++函数方法二:使用C++/CLI作为桥接1. 创建C++/CL

Python中pywin32 常用窗口操作的实现

《Python中pywin32常用窗口操作的实现》本文主要介绍了Python中pywin32常用窗口操作的实现,pywin32主要的作用是供Python开发者快速调用WindowsAPI的一个... 目录获取窗口句柄获取最前端窗口句柄获取指定坐标处的窗口根据窗口的完整标题匹配获取句柄根据窗口的类别匹配获取句

Linux之systemV共享内存方式

《Linux之systemV共享内存方式》:本文主要介绍Linux之systemV共享内存方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、工作原理二、系统调用接口1、申请共享内存(一)key的获取(二)共享内存的申请2、将共享内存段连接到进程地址空间3、将