C++类对象模型、类对象的存储方式、this指针、this指针的引出、this指针的特性、C语言和C++实现Stack的对比等的介绍。

本文主要是介绍C++类对象模型、类对象的存储方式、this指针、this指针的引出、this指针的特性、C语言和C++实现Stack的对比等的介绍。,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 前言
  • 一、C++类对象模型
    • 1. 类对象的存储方式
    • 2. 结构体内存对齐规则
  • 二、this指针
    • 1. this指针的引出
    • 2. this指针的特性
    • 3. C语言和C++实现Stack的对比
  • 总结


前言

C++类对象模型、类对象的存储方式、this指针、this指针的引出、this指针的特性、C语言和C++实现Stack的对比等的介绍。


一、C++类对象模型

1. 类对象的存储方式

只保存成员变量,成员函数存放在公共的代码段

#include <iostream>
using namespace std;// 类中包含成员变量和成员函数
class A1
{
public:void f1() {};
private:char _str;int _a;
};// 类中只含有成员函数
class A2
{
public:void f2() {};
};// 空类
class A3
{};int main()
{cout << sizeof(A1) << endl;cout << sizeof(A2) << endl;cout << sizeof(A3) << endl;return 0;
}

在这里插入图片描述

结论:一个类的大小,实际就是该类中”成员变量”之和,当然要注意内存对齐
注意空类的大小,空类比较特殊,编译器给了空类一个字节来唯一标识这个类的对象。

2. 结构体内存对齐规则

  1. 第一个成员在与结构体变量的偏移量为0的地址处。
  2. 其他成员变量要对齐到某个数字(对齐数)的整数倍的地址处。
    对齐数 = 编译器默认的一个对齐数 与 该成员大小的较小值
    - VS 中默认的值为 8。
    - 只有 VS 编译器有默认对齐数,其他编译器上的对齐数就是成员大小。
  3. 结构体总大小为最大对齐数(每个成员变量都有一个对齐数)的整数倍
  4. 如果嵌套了结构体的情况,嵌套的结构体对齐到自己的最大对齐数的整数倍处,结构体的整体大小就是所有最大对齐数(含嵌套结构体的对齐数)的整数倍

二、this指针

1. this指针的引出

#include <iostream>
using namespace std;class Date
{
public:void Init(int year, int month, int day){_year = year;_month = month;_day = day;}void Print(){cout << _year << " " << _month << " " << _day << " " << endl;}private:int _year;int _month;int _day;
};int main()
{Date d1, d2;d1.Init(2024, 6, 17);d2.Init(2022, 11, 11);d1.Print(); // 2024 6 17d2.Print(); // 2022 11 11return 0;
}
  • 有上述类对象的存储方式可知,成员函数是在公共区域中的,所以d1 和 d2 调用的是同一个函数。
  • 但是打印出的结果是不同的,编译器是如何区分的呢?

C++中通过引入this指针解决该问题,即:C++编译器给每个“非静态的成员函数“增加了一个隐藏的指针参数,让该指针指向当前对象(函数运行时调用该函数的对象),在函数体中所有“成员变量”的操作,都是通过该指针去访问。只不过所有的操作对用户是透明的,即用户不需要来传递,编译器自动完成。

  • 简单来说就是,每一个成员函数在调用时,编译器自动传入一个隐藏的this指针,该指针指向调用该函数的对象。函数中对成员变量的操作都是通过该this指针访问的。

在这里插入图片描述

  • 调用函数的大致过程如上:
  • 但是this是一个关键字,是编译器自动完成传参的,不能在形参和实参中显示传递。但是在函数内部可以直接使用。如下:
    在这里插入图片描述

2. this指针的特性

  1. this指针的类型类类型 const*,即成员函数中,不能给this指针赋值。
  2. 只能在“成员函数”的内部使用
  3. this指针本质上是“成员函数”的形参,当对象调用成员函数时,将对象地址作为实参传递给
    this形参。所以对象中不存储this指针。
  4. this指针是“成员函数”第一个隐含的指针形参,一般情况由编译器通过ecx寄存器自动传
    递,不需要用户传递。

this 指针存放在哪里?

  • this指针本质上是函数的形参,所以this指针存放在栈区中。

this 指针可以为空吗?

  • this 指针可以为空。如下:
#include <iostream>
using namespace std;class A
{
public:void Print(){cout << "Print()" << endl;}
private:int _a;
};int main()
{A* p = nullptr;p->Print();return 0;
}
  • 如上述代码,p为空指针,在调用类A的成员函数时,传入了p,即此时隐藏的this为空指针。
  • 上述代码能成功运行并打印的原因:
    类对象的成员函数是存放在公共区域中的,不存在类内部。并且,成员函数内部并没有访问成员变量,因此没有对this解引用。所以,程序可以成功运行。

#include <iostream>
using namespace std;class A
{
public:void Print(){cout << _a << endl;}
private:int _a;
};int main()
{A* p = nullptr;p->Print();return 0;
}

在这里插入图片描述

  • 上述代码在调用函数时传入空指针,但成员函数存放在公共区域中,this空指针无影响。
  • 但是 函数内部访问了成员变量,即对this指针进行解引用,所以会报错(空指针解引用,运行时错误)

3. C语言和C++实现Stack的对比

C语言实现Stack

#include <stdio.h>
#include <assert.h>
#include <stdlib.h>
#include <stdbool.h>#define DEFAULT_CAPACITY 4
typedef int STDataType;
typedef struct Stack
{STDataType* a;int size;int capacity;
}Stack;void StackInit(Stack* ps)
{assert(ps);ps->a = (STDataType*)malloc(sizeof(STDataType) * DEFAULT_CAPACITY);if (ps->a == NULL){perror("StackInit malloc");return;}ps->size = 0;ps->capacity = DEFAULT_CAPACITY;
}void StackDestroy(Stack* ps)
{assert(ps);free(ps->a);ps->a = NULL;ps->size = 0;ps->capacity = 0;
}void StackCheckCapacity(Stack* ps)
{if (ps->size == ps->capacity){STDataType* tmp = (STDataType*)realloc(ps->a, sizeof(STDataType) * (ps->capacity) * 2);if (tmp == NULL){perror("StackCheckCapacity realloc");return;}ps->a = tmp;tmp = NULL;ps->capacity *= 2;}
}void StackPush(Stack* ps, STDataType x)
{assert(ps);StackCheckCapacity(ps);ps->a[ps->size] = x;ps->size++;
}bool StackEmpty(Stack* ps)
{assert(ps);return (ps->size == 0);}void StackPop(Stack* ps)
{assert(ps && ps->size);ps->size--;
}STDataType StackTop(Stack* ps)
{assert(ps && ps->size);return (ps->a[ps->size - 1]);
}int StackSize(Stack* ps)
{assert(ps);return ps->size;
}int main()
{Stack st;StackInit(&st);StackPush(&st, 1);StackPush(&st, 2);StackPush(&st, 3);StackPush(&st, 4);StackPush(&st, 5);printf("%d\n", StackSize(&st));while (!StackEmpty(&st)){printf("%d ", StackTop(&st));StackPop(&st);}printf("\n");printf("%d\n", StackSize(&st));StackDestroy(&st);return 0;
}

在这里插入图片描述

可以看到,在用C语言实现时,Stack相关操作函数有以下共性:

  • 每个函数的第一个参数都是Stack*
  • 函数中必须要对第一个参数检测,因为该参数可能会为NULL
  • 函数中都是通过Stack*参数操作栈的
  • 调用时必须传递Stack结构体变量的地址

结构体中只能定义存放数据的结构,操作数据的方法不能放在结构体中,即数据和操作数据
的方式是分离开的
,而且实现上相当复杂一点,涉及到大量指针操作,稍不注意可能就会出
错。


C++实现Stack

#include <iostream>
#include <assert.h>
using namespace std;typedef int STDataType;
typedef struct Stack
{
public:// 初始化栈void Init(int capacity){_a = (STDataType*)malloc(sizeof(STDataType) * capacity);if (_a == nullptr){perror("Init malloc");return;}_capacity = capacity;_size = 0;}// 销毁栈void Destroy(){free(_a);_a = nullptr;_size = 0;_capacity = 0;}// 插入数据void Push(STDataType x){if (_size == _capacity){STDataType* tmp = (STDataType*)realloc(_a, sizeof(STDataType) * 2 * _capacity);if (tmp == nullptr){perror("Push realloc");return;}_a = tmp;_capacity *= 2;}_a[_size] = x;_size++;}// 判断是否为空bool Empty(){return (_size == 0);}// 出栈顶元素void Pop(){assert(!Empty());_size--;}// 获得栈顶元素STDataType Top(){return _a[_size - 1];}// 获得栈的大小int Size(){return _size;}private:STDataType* _a;int _size;int _capacity;
}Stack;int main()
{Stack st;st.Init(4);st.Push(1);st.Push(2);st.Push(3);st.Push(4);st.Push(5);cout << st.Top() << endl;cout << st.Size() << endl;while (!st.Empty()){cout << st.Top() << " ";st.Pop();}cout << endl;cout << st.Size() << endl;st.Pop();st.Destroy();return 0;
}

在这里插入图片描述

C++中通过类可以将数据 以及 操作数据的方法进行完美结合,通过访问权限可以控制那些方法在
类外可以被调用,即封装
,在使用时就像使用自己的成员一样,更符合人类对一件事物的认知。
而且每个方法不需要传递Stack*的参数了,编译器编译之后该参数会自动还原,即C++中 Stack *
参数是编译器维护的,C语言中需用用户自己维护


总结

C++类对象模型、类对象的存储方式、this指针、this指针的引出、this指针的特性、C语言和C++实现Stack的对比等的介绍。

这篇关于C++类对象模型、类对象的存储方式、this指针、this指针的引出、this指针的特性、C语言和C++实现Stack的对比等的介绍。的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1070271

相关文章

shell脚本批量导出redis key-value方式

《shell脚本批量导出rediskey-value方式》为避免keys全量扫描导致Redis卡顿,可先通过dump.rdb备份文件在本地恢复,再使用scan命令渐进导出key-value,通过CN... 目录1 背景2 详细步骤2.1 本地docker启动Redis2.2 shell批量导出脚本3 附录总

分布式锁在Spring Boot应用中的实现过程

《分布式锁在SpringBoot应用中的实现过程》文章介绍在SpringBoot中通过自定义Lock注解、LockAspect切面和RedisLockUtils工具类实现分布式锁,确保多实例并发操作... 目录Lock注解LockASPect切面RedisLockUtils工具类总结在现代微服务架构中,分布

Java使用Thumbnailator库实现图片处理与压缩功能

《Java使用Thumbnailator库实现图片处理与压缩功能》Thumbnailator是高性能Java图像处理库,支持缩放、旋转、水印添加、裁剪及格式转换,提供易用API和性能优化,适合Web应... 目录1. 图片处理库Thumbnailator介绍2. 基本和指定大小图片缩放功能2.1 图片缩放的

Oracle查询表结构建表语句索引等方式

《Oracle查询表结构建表语句索引等方式》使用USER_TAB_COLUMNS查询表结构可避免系统隐藏字段(如LISTUSER的CLOB与VARCHAR2同名字段),这些字段可能为dbms_lob.... 目录oracle查询表结构建表语句索引1.用“USER_TAB_COLUMNS”查询表结构2.用“a

Python使用Tenacity一行代码实现自动重试详解

《Python使用Tenacity一行代码实现自动重试详解》tenacity是一个专为Python设计的通用重试库,它的核心理念就是用简单、清晰的方式,为任何可能失败的操作添加重试能力,下面我们就来看... 目录一切始于一个简单的 API 调用Tenacity 入门:一行代码实现优雅重试精细控制:让重试按我

C语言中%zu的用法解读

《C语言中%zu的用法解读》size_t是无符号整数类型,用于表示对象大小或内存操作结果,%zu是C99标准中专为size_t设计的printf占位符,避免因类型不匹配导致错误,使用%u或%d可能引发... 目录size_t 类型与 %zu 占位符%zu 的用途替代占位符的风险兼容性说明其他相关占位符验证示

MySQL中EXISTS与IN用法使用与对比分析

《MySQL中EXISTS与IN用法使用与对比分析》在MySQL中,EXISTS和IN都用于子查询中根据另一个查询的结果来过滤主查询的记录,本文将基于工作原理、效率和应用场景进行全面对比... 目录一、基本用法详解1. IN 运算符2. EXISTS 运算符二、EXISTS 与 IN 的选择策略三、性能对比

MySQL常用字符串函数示例和场景介绍

《MySQL常用字符串函数示例和场景介绍》MySQL提供了丰富的字符串函数帮助我们高效地对字符串进行处理、转换和分析,本文我将全面且深入地介绍MySQL常用的字符串函数,并结合具体示例和场景,帮你熟练... 目录一、字符串函数概述1.1 字符串函数的作用1.2 字符串函数分类二、字符串长度与统计函数2.1

Redis客户端连接机制的实现方案

《Redis客户端连接机制的实现方案》本文主要介绍了Redis客户端连接机制的实现方案,包括事件驱动模型、非阻塞I/O处理、连接池应用及配置优化,具有一定的参考价值,感兴趣的可以了解一下... 目录1. Redis连接模型概述2. 连接建立过程详解2.1 连php接初始化流程2.2 关键配置参数3. 最大连

SpringBoot多环境配置数据读取方式

《SpringBoot多环境配置数据读取方式》SpringBoot通过环境隔离机制,支持properties/yaml/yml多格式配置,结合@Value、Environment和@Configura... 目录一、多环境配置的核心思路二、3种配置文件格式详解2.1 properties格式(传统格式)1.