3行代码实现 Python 并行处理,速度提高6倍!

2024-06-17 16:08

本文主要是介绍3行代码实现 Python 并行处理,速度提高6倍!,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

来源 | towardsdatascience.com

编译 | 数说君

出品 | 数说工作室

原标题:Here’s how you can get a 2–6x speed-up on your data pre-processing with Python

最近在 Towards Data Science 上看到一篇文章,如何用 Python 进行并行处理,觉得非常有帮助,因此介绍给大家,用我的风格对文章做了编译。


数据的预处理,是机器学习非常重要的一环。尽管 Python 提供了很多让人欲罢不能的库,但数据量一大,就不是那么回事了。

面对着海量的数据,再狂拽炫酷的计算都苍白无力,每一个简单的计算都要不断告诉自己:

Python,你算的累不累,

饿不饿?

渴不渴?

会不会让我等待太久,

是否可以快一点。

一方面是低效率,另一方面呢,却是电脑资源的闲置,给你们算笔账:

现在我们做机器学习的个人电脑,大部分都是双CPU核的,有的是4核甚至6核(intel i7)。而 Python 默认情况下是用单核进行做数据处理,这就意味着,Python 处理数据时,电脑有50%的处理能力被闲置了!

还好,Python 有一个隐藏 “皮肤”,可以对核资源的利用率进行加成!这个隐藏“皮肤” 就是 concurrent.futures 模块,能够帮助我们充分利用所有CPU内核。

下面就举个例子进行说明:

在图像处理领域,我们有时候要处理海量的图像数据,比如几百万张照片进行尺寸统一化调整,然后扔到神经网络中进行训练。这时候 concurrent.futures 模块可以帮我们缩短数倍的时间。

为了便于比较,这里拿1000张照片做例子,我们需要:把这1000张照片统一调整成 600x600 的尺寸:

(1)一般的方法

上面是最常见的数据处理方法:

① 准备好要处理的原始文件,比如几百万个txt、jpg等;

② 用for循环一个一个的处理,每一个循环里面运行一次预处理,这里的预处理就是 imread() 和 resize(),即读入每一张图片,重新调整一下大小。

1000张照片的话,大概要花费多久呢?我们来跑一下时间:

time python standard_res_conversion.py

在作者的 i7-8700k 6核CPU处理器上,一共大概7.9864秒。才1000张照片,花了将近8秒,你可以闭上眼感受一下,互联网有一个「八秒定律」,即指用户访问一个网站时,如果等待网页打开的时间超过8秒,会有超过70%的用户放弃等待。

(2)快的方法

concurrent.futures 模块能够利用并行处理来帮我们加速,什么是并行处理,举个例子:

假设我们要把1000个钉子钉入一块木头里,钉一次要1秒,那么1000次就要1000秒。 但假如我们让4个人同时来钉,分摊成4个人,最快只要250秒。这就是并行处理

这1000张照片,也可以分成多个进程来处理。用 concurrent.futures 库只要多3行代码:

代码中,首先把具体的处理过程打包成函数 load_and_resize(),然后用框出来的3行代码,即可实现多线程处理:

with concurrent.futures.ProcessPoolExecutor() as executor:

这句意味着你有多少CPU核心,就启动多少Python进程,这里作者的电脑是6个核,就同时启动6个项。

image_files = glob.glob(".*jpg")

读入原始数据。

executor.map(load_and_resize, image_file)

这个是实际的处理语句,第一个参数是处理函数,第二个参数是原始数据。这个语句意味着,用6个进程,来并行对 image_file 文件进行 load_and_resize 处理。

再跑一下时间:

time python fast_res_conversion.py

这次只需要1.14265秒,快了几乎6倍!

(3)例外情况

由于并行的处理是没有顺序的,因此如果你需要的结果是按照特定顺序排列的,那么这种方法不是很适用。

另外就是数据类型必须要是Python能够去pickle的,比如:

  • None, True, 及 False
  • 整数,浮点数,复数
  • 字符串,字节,字节数组
  • 仅包含可选对象的元组,列表,集合和词典
  • 在模块的顶层定义的函数(用 def 定义,而不是lambda)
  • 在模块顶层定义的内置函数
  • 在模块顶层定义的类
  • 类的实例,这些类的__dict__或调用__getstate __()的结果是可选择的

这篇关于3行代码实现 Python 并行处理,速度提高6倍!的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1069914

相关文章

SpringBoot集成redisson实现延时队列教程

《SpringBoot集成redisson实现延时队列教程》文章介绍了使用Redisson实现延迟队列的完整步骤,包括依赖导入、Redis配置、工具类封装、业务枚举定义、执行器实现、Bean创建、消费... 目录1、先给项目导入Redisson依赖2、配置redis3、创建 RedissonConfig 配

Python的Darts库实现时间序列预测

《Python的Darts库实现时间序列预测》Darts一个集统计、机器学习与深度学习模型于一体的Python时间序列预测库,本文主要介绍了Python的Darts库实现时间序列预测,感兴趣的可以了解... 目录目录一、什么是 Darts?二、安装与基本配置安装 Darts导入基础模块三、时间序列数据结构与

Python正则表达式匹配和替换的操作指南

《Python正则表达式匹配和替换的操作指南》正则表达式是处理文本的强大工具,Python通过re模块提供了完整的正则表达式功能,本文将通过代码示例详细介绍Python中的正则匹配和替换操作,需要的朋... 目录基础语法导入re模块基本元字符常用匹配方法1. re.match() - 从字符串开头匹配2.

Python使用FastAPI实现大文件分片上传与断点续传功能

《Python使用FastAPI实现大文件分片上传与断点续传功能》大文件直传常遇到超时、网络抖动失败、失败后只能重传的问题,分片上传+断点续传可以把大文件拆成若干小块逐个上传,并在中断后从已完成分片继... 目录一、接口设计二、服务端实现(FastAPI)2.1 运行环境2.2 目录结构建议2.3 serv

C#实现千万数据秒级导入的代码

《C#实现千万数据秒级导入的代码》在实际开发中excel导入很常见,现代社会中很容易遇到大数据处理业务,所以本文我就给大家分享一下千万数据秒级导入怎么实现,文中有详细的代码示例供大家参考,需要的朋友可... 目录前言一、数据存储二、处理逻辑优化前代码处理逻辑优化后的代码总结前言在实际开发中excel导入很

通过Docker容器部署Python环境的全流程

《通过Docker容器部署Python环境的全流程》在现代化开发流程中,Docker因其轻量化、环境隔离和跨平台一致性的特性,已成为部署Python应用的标准工具,本文将详细演示如何通过Docker容... 目录引言一、docker与python的协同优势二、核心步骤详解三、进阶配置技巧四、生产环境最佳实践

Python一次性将指定版本所有包上传PyPI镜像解决方案

《Python一次性将指定版本所有包上传PyPI镜像解决方案》本文主要介绍了一个安全、完整、可离线部署的解决方案,用于一次性准备指定Python版本的所有包,然后导出到内网环境,感兴趣的小伙伴可以跟随... 目录为什么需要这个方案完整解决方案1. 项目目录结构2. 创建智能下载脚本3. 创建包清单生成脚本4

SpringBoot+RustFS 实现文件切片极速上传的实例代码

《SpringBoot+RustFS实现文件切片极速上传的实例代码》本文介绍利用SpringBoot和RustFS构建高性能文件切片上传系统,实现大文件秒传、断点续传和分片上传等功能,具有一定的参考... 目录一、为什么选择 RustFS + SpringBoot?二、环境准备与部署2.1 安装 RustF

Nginx部署HTTP/3的实现步骤

《Nginx部署HTTP/3的实现步骤》本文介绍了在Nginx中部署HTTP/3的详细步骤,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学... 目录前提条件第一步:安装必要的依赖库第二步:获取并构建 BoringSSL第三步:获取 Nginx

MyBatis Plus实现时间字段自动填充的完整方案

《MyBatisPlus实现时间字段自动填充的完整方案》在日常开发中,我们经常需要记录数据的创建时间和更新时间,传统的做法是在每次插入或更新操作时手动设置这些时间字段,这种方式不仅繁琐,还容易遗漏,... 目录前言解决目标技术栈实现步骤1. 实体类注解配置2. 创建元数据处理器3. 服务层代码优化填充机制详