汇总|目标检测中的数据增强、backbone、head、neck、损失函数

2024-06-17 15:48

本文主要是介绍汇总|目标检测中的数据增强、backbone、head、neck、损失函数,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、数据增强方式

  1. random erase
  2. CutOut
  3. MixUp
  4. CutMix
  5. 色彩、对比度增强
  6. 旋转、裁剪

解决数据不均衡:

  • Focal loss
  • hard negative example mining
  • OHEM
  • S-OHEM
  • GHM(较大关注easy和正常hard样本,较少关注outliners)
  • PISA

二、常用backbone

  1. VGG
  2. ResNet(ResNet18,50,100)
  3. ResNeXt
  4. DenseNet
  5. SqueezeNet
  6. Darknet(Darknet19,53)
  7. MobileNet
  8. ShuffleNet
  9. DetNet
  10. DetNAS
  11. SpineNet
  12. EfficientNet(EfficientNet-B0/B7)
  13. CSPResNeXt50
  14. CSPDarknet53

三、常用Head

Dense Prediction (one-stage):

  1. RPN
  2. SSD
  3. YOLO
  4. RetinaNet
  5. (anchor based)
  6. CornerNet
  7. CenterNet
  8. MatrixNet
  9. FCOS(anchor free)

Sparse Prediction (two-stage):

  1. Faster R-CNN
  2. R-FCN
  3. Mask RCNN (anchor based)
  4. RepPoints(anchor free)

四、常用neck

Additional blocks:

  1. SPP
  2. ASPP
  3. RFB
  4. SAM

Path-aggregation blocks:

  1. FPN
  2. PAN
  3. NAS-FPN
  4. Fully-connected FPN
  5. BiFPN
  6. ASFF
  7. SFAM
  8. NAS-FPN

五、Skip-connections

  1. Residual connections
  2. Weighted residual connections
  3. Multi-input weighted residual connections
  4. Cross stage partial connections (CSP)

六、常用激活函数和loss

激活函数:

  • ReLU
  • LReLU
  • PReLU
  • ReLU6
  • Scaled Exponential Linear Unit (SELU)
  • Swish
  • hard-Swish
  • Mish

loss:

  • MSE
  • Smooth L1
  • Balanced L1
  • KL Loss
  • GHM loss
  • IoU Loss
  • Bounded IoU Loss
  • GIoU Loss
  • CIoU Loss
  • DIoU Loss

七、正则化和BN方式

正则化:

  • DropOut
  • DropPath
  • Spatial DropOut
  • DropBlock

BN:

  • Batch Normalization (BN)
  • Cross-GPU Batch Normalization (CGBN or SyncBN)
  • Filter Response Normalization (FRN)
  • Cross-Iteration Batch Normalization (CBN)

 

八、训练技巧

  • Label Smoothing
  • Warm Up

 

https://zhuanlan.zhihu.com/p/137769687

https://zhuanlan.zhihu.com/p/137769687

https://zhuanlan.zhihu.com/p/137769687

这篇关于汇总|目标检测中的数据增强、backbone、head、neck、损失函数的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1069874

相关文章

SQL Server修改数据库名及物理数据文件名操作步骤

《SQLServer修改数据库名及物理数据文件名操作步骤》在SQLServer中重命名数据库是一个常见的操作,但需要确保用户具有足够的权限来执行此操作,:本文主要介绍SQLServer修改数据... 目录一、背景介绍二、操作步骤2.1 设置为单用户模式(断开连接)2.2 修改数据库名称2.3 查找逻辑文件名

OpenCV实现实时颜色检测的示例

《OpenCV实现实时颜色检测的示例》本文主要介绍了OpenCV实现实时颜色检测的示例,通过HSV色彩空间转换和色调范围判断实现红黄绿蓝颜色检测,包含视频捕捉、区域标记、颜色分析等功能,具有一定的参考... 目录一、引言二、系统概述三、代码解析1. 导入库2. 颜色识别函数3. 主程序循环四、HSV色彩空间

Python中help()和dir()函数的使用

《Python中help()和dir()函数的使用》我们经常需要查看某个对象(如模块、类、函数等)的属性和方法,Python提供了两个内置函数help()和dir(),它们可以帮助我们快速了解代... 目录1. 引言2. help() 函数2.1 作用2.2 使用方法2.3 示例(1) 查看内置函数的帮助(

C++ 函数 strftime 和时间格式示例详解

《C++函数strftime和时间格式示例详解》strftime是C/C++标准库中用于格式化日期和时间的函数,定义在ctime头文件中,它将tm结构体中的时间信息转换为指定格式的字符串,是处理... 目录C++ 函数 strftipythonme 详解一、函数原型二、功能描述三、格式字符串说明四、返回值五

canal实现mysql数据同步的详细过程

《canal实现mysql数据同步的详细过程》:本文主要介绍canal实现mysql数据同步的详细过程,本文通过实例图文相结合给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的... 目录1、canal下载2、mysql同步用户创建和授权3、canal admin安装和启动4、canal

使用SpringBoot整合Sharding Sphere实现数据脱敏的示例

《使用SpringBoot整合ShardingSphere实现数据脱敏的示例》ApacheShardingSphere数据脱敏模块,通过SQL拦截与改写实现敏感信息加密存储,解决手动处理繁琐及系统改... 目录痛点一:痛点二:脱敏配置Quick Start——Spring 显示配置:1.引入依赖2.创建脱敏

Linux实现线程同步的多种方式汇总

《Linux实现线程同步的多种方式汇总》本文详细介绍了Linux下线程同步的多种方法,包括互斥锁、自旋锁、信号量以及它们的使用示例,通过这些同步机制,可以解决线程安全问题,防止资源竞争导致的错误,示例... 目录什么是线程同步?一、互斥锁(单人洗手间规则)适用场景:特点:二、条件变量(咖啡厅取餐系统)工作流

详解如何使用Python构建从数据到文档的自动化工作流

《详解如何使用Python构建从数据到文档的自动化工作流》这篇文章将通过真实工作场景拆解,为大家展示如何用Python构建自动化工作流,让工具代替人力完成这些数字苦力活,感兴趣的小伙伴可以跟随小编一起... 目录一、Excel处理:从数据搬运工到智能分析师二、PDF处理:文档工厂的智能生产线三、邮件自动化:

Python数据分析与可视化的全面指南(从数据清洗到图表呈现)

《Python数据分析与可视化的全面指南(从数据清洗到图表呈现)》Python是数据分析与可视化领域中最受欢迎的编程语言之一,凭借其丰富的库和工具,Python能够帮助我们快速处理、分析数据并生成高质... 目录一、数据采集与初步探索二、数据清洗的七种武器1. 缺失值处理策略2. 异常值检测与修正3. 数据

Python中bisect_left 函数实现高效插入与有序列表管理

《Python中bisect_left函数实现高效插入与有序列表管理》Python的bisect_left函数通过二分查找高效定位有序列表插入位置,与bisect_right的区别在于处理重复元素时... 目录一、bisect_left 基本介绍1.1 函数定义1.2 核心功能二、bisect_left 与