汇总|目标检测中的数据增强、backbone、head、neck、损失函数

2024-06-17 15:48

本文主要是介绍汇总|目标检测中的数据增强、backbone、head、neck、损失函数,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、数据增强方式

  1. random erase
  2. CutOut
  3. MixUp
  4. CutMix
  5. 色彩、对比度增强
  6. 旋转、裁剪

解决数据不均衡:

  • Focal loss
  • hard negative example mining
  • OHEM
  • S-OHEM
  • GHM(较大关注easy和正常hard样本,较少关注outliners)
  • PISA

二、常用backbone

  1. VGG
  2. ResNet(ResNet18,50,100)
  3. ResNeXt
  4. DenseNet
  5. SqueezeNet
  6. Darknet(Darknet19,53)
  7. MobileNet
  8. ShuffleNet
  9. DetNet
  10. DetNAS
  11. SpineNet
  12. EfficientNet(EfficientNet-B0/B7)
  13. CSPResNeXt50
  14. CSPDarknet53

三、常用Head

Dense Prediction (one-stage):

  1. RPN
  2. SSD
  3. YOLO
  4. RetinaNet
  5. (anchor based)
  6. CornerNet
  7. CenterNet
  8. MatrixNet
  9. FCOS(anchor free)

Sparse Prediction (two-stage):

  1. Faster R-CNN
  2. R-FCN
  3. Mask RCNN (anchor based)
  4. RepPoints(anchor free)

四、常用neck

Additional blocks:

  1. SPP
  2. ASPP
  3. RFB
  4. SAM

Path-aggregation blocks:

  1. FPN
  2. PAN
  3. NAS-FPN
  4. Fully-connected FPN
  5. BiFPN
  6. ASFF
  7. SFAM
  8. NAS-FPN

五、Skip-connections

  1. Residual connections
  2. Weighted residual connections
  3. Multi-input weighted residual connections
  4. Cross stage partial connections (CSP)

六、常用激活函数和loss

激活函数:

  • ReLU
  • LReLU
  • PReLU
  • ReLU6
  • Scaled Exponential Linear Unit (SELU)
  • Swish
  • hard-Swish
  • Mish

loss:

  • MSE
  • Smooth L1
  • Balanced L1
  • KL Loss
  • GHM loss
  • IoU Loss
  • Bounded IoU Loss
  • GIoU Loss
  • CIoU Loss
  • DIoU Loss

七、正则化和BN方式

正则化:

  • DropOut
  • DropPath
  • Spatial DropOut
  • DropBlock

BN:

  • Batch Normalization (BN)
  • Cross-GPU Batch Normalization (CGBN or SyncBN)
  • Filter Response Normalization (FRN)
  • Cross-Iteration Batch Normalization (CBN)

 

八、训练技巧

  • Label Smoothing
  • Warm Up

 

https://zhuanlan.zhihu.com/p/137769687

https://zhuanlan.zhihu.com/p/137769687

https://zhuanlan.zhihu.com/p/137769687

这篇关于汇总|目标检测中的数据增强、backbone、head、neck、损失函数的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1069874

相关文章

SpringBoot分段处理List集合多线程批量插入数据方式

《SpringBoot分段处理List集合多线程批量插入数据方式》文章介绍如何处理大数据量List批量插入数据库的优化方案:通过拆分List并分配独立线程处理,结合Spring线程池与异步方法提升效率... 目录项目场景解决方案1.实体类2.Mapper3.spring容器注入线程池bejsan对象4.创建

PHP轻松处理千万行数据的方法详解

《PHP轻松处理千万行数据的方法详解》说到处理大数据集,PHP通常不是第一个想到的语言,但如果你曾经需要处理数百万行数据而不让服务器崩溃或内存耗尽,你就会知道PHP用对了工具有多强大,下面小编就... 目录问题的本质php 中的数据流处理:为什么必不可少生成器:内存高效的迭代方式流量控制:避免系统过载一次性

C#实现千万数据秒级导入的代码

《C#实现千万数据秒级导入的代码》在实际开发中excel导入很常见,现代社会中很容易遇到大数据处理业务,所以本文我就给大家分享一下千万数据秒级导入怎么实现,文中有详细的代码示例供大家参考,需要的朋友可... 目录前言一、数据存储二、处理逻辑优化前代码处理逻辑优化后的代码总结前言在实际开发中excel导入很

C++统计函数执行时间的最佳实践

《C++统计函数执行时间的最佳实践》在软件开发过程中,性能分析是优化程序的重要环节,了解函数的执行时间分布对于识别性能瓶颈至关重要,本文将分享一个C++函数执行时间统计工具,希望对大家有所帮助... 目录前言工具特性核心设计1. 数据结构设计2. 单例模式管理器3. RAII自动计时使用方法基本用法高级用法

MyBatis-plus处理存储json数据过程

《MyBatis-plus处理存储json数据过程》文章介绍MyBatis-Plus3.4.21处理对象与集合的差异:对象可用内置Handler配合autoResultMap,集合需自定义处理器继承F... 目录1、如果是对象2、如果需要转换的是List集合总结对象和集合分两种情况处理,目前我用的MP的版本

GSON框架下将百度天气JSON数据转JavaBean

《GSON框架下将百度天气JSON数据转JavaBean》这篇文章主要为大家详细介绍了如何在GSON框架下实现将百度天气JSON数据转JavaBean,文中的示例代码讲解详细,感兴趣的小伙伴可以了解下... 目录前言一、百度天气jsON1、请求参数2、返回参数3、属性映射二、GSON属性映射实战1、类对象映

C# LiteDB处理时间序列数据的高性能解决方案

《C#LiteDB处理时间序列数据的高性能解决方案》LiteDB作为.NET生态下的轻量级嵌入式NoSQL数据库,一直是时间序列处理的优选方案,本文将为大家大家简单介绍一下LiteDB处理时间序列数... 目录为什么选择LiteDB处理时间序列数据第一章:LiteDB时间序列数据模型设计1.1 核心设计原则

GO语言中函数命名返回值的使用

《GO语言中函数命名返回值的使用》在Go语言中,函数可以为其返回值指定名称,这被称为命名返回值或命名返回参数,这种特性可以使代码更清晰,特别是在返回多个值时,感兴趣的可以了解一下... 目录基本语法函数命名返回特点代码示例命名特点基本语法func functionName(parameters) (nam

Python Counter 函数使用案例

《PythonCounter函数使用案例》Counter是collections模块中的一个类,专门用于对可迭代对象中的元素进行计数,接下来通过本文给大家介绍PythonCounter函数使用案例... 目录一、Counter函数概述二、基本使用案例(一)列表元素计数(二)字符串字符计数(三)元组计数三、C

Java+AI驱动实现PDF文件数据提取与解析

《Java+AI驱动实现PDF文件数据提取与解析》本文将和大家分享一套基于AI的体检报告智能评估方案,详细介绍从PDF上传、内容提取到AI分析、数据存储的全流程自动化实现方法,感兴趣的可以了解下... 目录一、核心流程:从上传到评估的完整链路二、第一步:解析 PDF,提取体检报告内容1. 引入依赖2. 封装